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Introduction

These notes correspond to a short minicourse (�ve 90 minute sessions)
given at the IPM in Tehran in November 2015. In spite of the title, this
minicourse also covers basics of the model theory of Abstract Elementary
Classes and is rather self-contained. A few recent lines of research appear
mentioned in context - but without the details of the development:

• canonicity of non-forking independence,
• connections with large cardinals,
• examples arising from the “Oxford school”.

The aim is to provide a rather contemporary - albeit very quick overview
of a selection of topics where research is active in the world of Abstract
Elementary Classes.

An inspiration for these notes came from Rami Grossberg’s [4], orig-
inally also a minicourse he gave in 2001 at Bilgi University in Istanbul.
There the treatment of the subject includes more detail on the develop-
ment of basic stability theory of AECs - I try to respond here with less
stability theory and more of the aforementioned connections. In many
ways, the current minicourse should be read together with [4]; many top-
ics mentioned brie�y here are expounded in detail there, at least the parts
corresponding to Days 1 and 2 here.

The model theory of Abstract Elementary Classes (AECs) started with
Shelah’s attempt, in the early 1980s, to generalize his earlier results to in-
�nitary logics. Categoricity Transfer was the primary driving force for
the development of this model theory and it continues to be, more than
three decades on, perhaps the main force behind some of the sharper de-
velopments in the area.

The initial de�ning feature in the model theory of AECs is a steady shift
from an emphasis on syntax to an emphasis on semantics, a reduction ofbetter word?
the rôle of de�nability in favor of more focus on “strong” embeddings be-
tween models and automorphism groups of large models.

1. Day 1: The early days of AECs.

1.1. The Origins / The Basics. One of the questions that started the pro-
cess was the problem of proving Categoricity Transfer, a Morley-like the-
orem, for the in�nitary logic Lω1,ω. Namely, is it true that if an Lω1,ω-
sentence ψ is categorical in some uncountable cardinal, then it is categor-
ical in all uncountable cardinals?

More generally, what is the behavior of the function I(ψ, λ) := |{M |=
ψ | |M| = λ}/ ≈ |, for a sentence ψ of the logic Lω1,ω?
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Another early origin of Abstract Elementary Classes, complementary
to the Categoricity problem, was Shelah’s idea of (as expressed in his pa-
per The Lazy Model-Theoretician’s Guide to Stability Theory [8]) speak-
ing mainly to “those who are interested in algebraically-minded model
theory, i.e., generic models, the class of e-closed models and universal-
homogeneous models rather than elementary classes and saturated mod-
els. These were his words in 1975. He continues: “our main point is that
though stability theory was developed for the latter context, almost ev-
erything goes through in the wider context (with suitable changes in the
de�nitions).

This declaration (the “almost everything goes through”) entailed more
than it could seem at �rst sight: in many ways it is true but it took a long
time to build up the right notions of stability, of types, of independence.

Replacing formulas by an abstract notion of “strong embedding” be-
tween L-structures is the �rst important point. In the de�nition of AECs
we do not declare membership in the class by satisfying some sentence or
some axiomatic system. The relation |=, basic in First Order logic, takes a
back seat here, and the main relation 6K (a generalization of the elemen-
tary submodel relation ≺ of �rst order) now leads the game.

De�nition 1.1 (Abstract Elementary Class). Fix a language L. A class K

of L-structures, together with a binary relation 6K on K is an abstract
elementary class (for short, AEC) if:

(1) Both K and 6K are closed under isomorphism. This means two
things: �rst, if M ′ ≈ M ∈ K then M ′ ∈ K; second, if M ′,N ′ are
L-structures with M ′ ⊂ N ′, M ′ ≈M, N ′ ≈ N and M 6K N then
M ′ 6K N ′.

(2) IfM,N ∈ K,M 6K N thenM ⊂ N,
(3) 6K is a partial order,
(4) (Coherence) IfM ⊂ N 6K N ′ andM 6K N ′ thenM 6K N,
(5) (LS) There is a cardinal (called “the Löwenheim-Skolem number” of

the class) κ = LS(K) > ℵ0 such that if M ∈ K and A ⊂ |M|, then
there is N 6K M with A ⊂ |N| and |N| 6 |A|+ LS(K),

(6) (Unions of 6K-chains) If (Mi)i<δ is a 6K-increasing chain of
length δ (δ a limit ordinal), then
•
⋃
i<δ(Mi)i<δ ∈ K,

• for each j < δ,Mj 6K
⋃
i<δMi,

• if for each i < δ,Mi 6K N ∈ K then
⋃
i<δMi 6K N.

Remark 1.2. The unions axiom may always be strengthened to unions
of directed systems. This is proved by induction on the co�nality of the
directed system.
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At this point, we have the following situation:
• So far, no control on possible axiomatization of the class K. The em-

phasis is placed on its being closed under the constructions speci�ed
in the axioms. However, later (in subsection 2.1) we focus on the
logical control of these classes. Remember Shelah’s “algebraically-
minded model theory”.
• These are not necessarily amalgamation classes: there is no amalga-

mation axiom. However, many AECs do satisfy the amalgamation
property. Furthermore, the model theory will depend on the kind of
amalgamation possible in the class.

1.2. First examples. Here are some examples of AECs:
• Let T be a complete �rst order theory. Then (Mod(T),≺) is an

AEC. If T is countable, then LS(Mod(T)) = ℵ0.
• For ψ a sentence of Lω1,ω and F a countable fragment of Lω1,ω

containingψ, (Mod(ψ),≺TVF ) is an AEC with Löwenheim-Skolem
number ℵ0. M ≺TVF N i�M ⊂ N and they satisfy a “Tarski-Vaught
test” with respect to sentences of the fragment F.
• Analogously, for ψ a sentence of Lκ+,ω and F a fragment of Lκ+,ω

of cardinality 6 κ containing ψ, (Mod(ψ),≺TVF ) is an AEC with
Löwenheim-Skolem number κ.
• The class of locally �nite groups, with the usual subgroup relation,

is an AEC.
• Various interesting AECs consisting of abelian groups can be ob-

tained by using the “pure subgroup” relation, etc.
• The class of countable models of arithmetic, together with ω-like

models of size ℵ1, with the end elementary extension relation, is an
AEC.
• Various classes axiomatizable with cardinality quanti�ers, are in-

deed AECs.
• The class of all atomic models of a complete FO theory T , with ≺,

is an AEC.
• The class of all e.c. models of a complete FO theory T , with≺, is an

AEC.

1.3. CategoricityTransfer: theMainProblem. The primal driving force
behind AECs was in the early days Shelah’s Categoricity Transfer Conjec-
ture: to �nd versions of Morley’s Theorem for AECs:

A very wide version of the Categoricity Conjecture:

Conjecture 1.3. For every cardinal λ, there exists a cardinal µλ such that if
K is an AEC with LS(K) = λ categorical in a cardinal > µλ, then K is
categorical in every cardinal greater than or equal to µλ.
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It is an understatement to say that this problem has led the main devel-
opments not only of model theory of AECs but of the whole of model the-
ory for the past half-century. Morley’s proof triggered the development of
alternate proofs (Shelah, Baldwin-Lachlan) that in the early 1970s helped
�nd the main structural features of model classes (the stability hierarchy,
the role of strongly minimal sets and later the role of regular types). Later
on, with the development of the model theory of AECs this story contin-
ued, and naturally increased in complexity (even taking as a standard the
already very complex book Classi�cation Theory, the new model theory of
Abstract Elementary Classes ushered new degrees of complexity that are
still far from being mapped out).

In attempting to prove a version of the categoricity conjecture one is led
(forced?) to understand most of the following:

• the structure of types
• versions of saturation (here, in the next section, Galois-saturation

is one of the main options)
• the stability spectrum - usually guaranteeing that categoricity in κ

implies enough stability below κ
• some form of locality of “forking-independence”, to use a type omit-

ted by a model in some cardinality and �nding a small set over
which it is independent
• a version of transfer of omitting types (e.g. with primary models

over sets of indiscernibles),
• in some cases, minimal types - or regular types
• alternatively, Vaughtian pair techniques
• alternatively, building dimension into the proof, as in Baldwin-Lachlan
• ...

The point here is that in AECs the situation with the categoricity conjec-
ture also follows this pattern: attempting to prove it (or proving particular
cases) has forced model theorists to develop parallels to the concepts ap-
pearing in the previous list. This development has so far taken more than
three decades and is bound to produce structural knowledge that (as hap-
pened in �rst order) later entangles with the rest of mathematics.

One good example of the previous phenomenon is the concept of an
excellent class. Excellence was originally discovered by Shelah to analyze
models of sentences of Lω1,ω in connection with the categoricity conjec-
ture. Much later, at least two connections with other parts of mathematics
were discovered, related to excellence:

• Zilber based his early analysis of pseudo-exponential �elds on what
was originally called “quasiminimal excellent classes” - recently, the
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more combinatorially complicated excellence has been shown to be
a consequence of the quasiminimality.
• The Hrushovski analysis of abstract elimination of imaginaries is

partially connected to a variant of excellence (and also to binding
groupoids and to properties of covers).

1.4. Types in AECs -Local and global properties in AECs. We now
de�ne the notion of a type in AECs.

De�nition 1.4. Fix an aec (K,6K), M` ≺K N` models in K, a` ∈ N, for
` = 0, 1. Then (M0,N0,a0) ∼ (M1,N1,a1) if and only if
• M0 =M1,
• there exist Ñ and K-embeddings f` : N` → Ñ such that f0(a0) =
f1(a1) and f0 �M0 = f1 �M1.

The previous de�nition does not necessarily yield an equivalence rela-
tion; however, if the aec K satis�es the amalgamation property (AP) next
de�ned, ∼ is indeed an equivalence relation (exercise!).

De�nition 1.5. An aec K satis�es the amalgamation property (AP) i� for
every tripleM0,M1,M2 such thatM0 ≺K M1 andM0 ≺K M2 there exist
a model M3 and maps g` : M` → M3 (` = 1, 2) such that f1 � M0 = f2 �
M0.

Under the Amalgamation Property, ∼ is an equivalence relation between
triples. The equivalence class of (M,N,a) is called the Galois type of a
overM inN - and sometimes just the “type” of a overM inN. A common
notation for this equivalence class is gatp(a/M,N).
• Usual �rst order (syntactic) types are an example of these. There-

fore, this notion generalizes the usual one. (Exercise: if a,b ∈ M,
for a saturated model M of a �rst order theory T , tp(a/M0) =
tp(b/M0) i� gatp(a/M0,M) = gatp(b/M0,M), whenM0 ≺M.)
• This notion also re�nes the notion of a syntactic type (consistent set

of formulas in one variable) inLω1,ω: gatp(a/M,N) = gatp(b/M,N)
implies that tpLω1,ω

(a/M) = tpLω1,ω
(b/M). The converse usually

does not hold: Galois types are usually “�ner” than syntactic types;
they detect di�erences that may be unavailable to syntactic types.

1.4.1. Monster model. When the class K satis�es the amalgamation prop-
erty (AP), the Joint Embedding Property (JEP) and has no maximal models,
one can easily show that it has a monster model - that is a model M that
is
• strongly homogeneous: every isomorphism f :M→ NwithM,N 6K

M and |M| = |N| < |M| can be extended to f̂ ∈ Aut(M).
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• Galois-saturated: every Galois type of the form (M,N,a) forM 6K

M can be realized in M - i.e., there exists b ∈ M such that (M,N,a) ∼
(M,M,b).

When there is a monster model M, the following holds (exercise):

Proposition 1.6. For any a,b ∈ M and M 6K M, the following two are
equivalent:
• gatp(a/M,M) = gatp(b/M,M)
• there exists f ∈ Aut(M/M) such that f(a) = b.

This justi�es the usual identi�cation “Galois types = orbital types”: Ga-
lois types are really orbits under the automorphism group of the monster,
�xing the base of the type. In many sources in AECs this is the most com-
mon way to treat Galois types - but in situations with no monster model
or no amalgamation one has to use the relation ∼ between triples.

1.4.2. Counting types. The number of types is, as in �rst order, fundamen-
tal. An AEC K is Galois-stable in λ if and only if –as expected– the number
of Galois types over any model of size λ is λ. This value is the minimum
possible, by the following lemma (exercise); ga− S(M) denotes the set of
all Galois types overM.

Lemma 1.7. For any modelM of size λ, λ 6 |ga− S(M)| 6 2λ.

Later in these notes, we will sketch a proof of stability below a cate-
goricity cardinal in appropriate AECs.

2. Day 2: Stability Theory of AECs.

2.1. The Presentation Theorem. We follow Lessmann’s simplication of
the exposition of the proof[7].

Theorem 2.1 (Shelah). Let (K,6K) be an AEC in a language L. Then there
exist
• A language L ′ ⊃ L, with size LS(K),
• A (�rst order) theory T ′ in L ′ and
• A set of T ′-types, Γ ′, such that

K = PC(L, T ′, Γ ′) := {M ′ � L |M ′ |= T ′,M ′ omits Γ ′}.
Moreover, if M ′,N ′ |= T ′, they both omit Γ ′, M =M ′ � L and N = N ′ �
L,

M ′ ⊂ N ′ ⇔M 6K N.

Proof Let L ′ = L ∪ {Fni | i < LS(K),n < ω} and let T ′ be the theory
consisting of the following axioms:
• ∃x(x = x),
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• ∀x0 · · · ∀xn−1F
n
i (x0, · · · , xn−1) = xi, for i < n.

Notice that this does not determine the values of Fni for i > n.
Now letM ′ |= T ′ and a ∈M a tuple. For each subtuple b of a let

Ub := {Fmi (b) | i < LS(K)}, with `(b) = m.

Then Ub ⊂ M ′. Whether Ub is or not the universe of a submodel of
M ′ � L is determined by the quanti�er-free type of a over the empty set,

qftpL ′(a/∅,M ′).

Now, if Ub is indeed the universe of a submodel of M � L then this sub-
model is “generated” (entirely determined) by b andM ′ - call itMb.

The isomorphism type ofMb, and its membership in K, are also deter-
mined by qftpL ′(a/∅,M ′), as well as whetherMb 6K Ma:

Fact 2.2. If qftpL ′(a1/∅,M ′) = qftpL ′(a2/∅,M ′) then
• Mb1 ≈Mb2 wheneverb1 is a subtuple ofa1, b2 is the corresponding

subtuple of a2 andUb1 ,Ub2 are the universes of a submodel ofM ′ �
L.
• In this case,Mb1 ∈ K i�Mb2 ∈ K.
• Mb1 6K Ma1 i�Mb2 6K Ma2 .

Let now Γ ′ be the set of all qf types of the form qftpL ′(a/∅,M ′) for
M ′ |= T ′ and a a tuple inM ′ that do not satisfy the two conditions:
• For every subtuple b of a the set Ub is the universe of a submodel
Mb ofM ′ � L andMb ∈ K.
• For every subtuple b of a,Mb 6K Ma.

Fact 2.3. K = PC(L, T ′, Γ ′).

Proof of 2.3. If M ∈ K, de�ne the expansion M ′ of M by induction
on n < ω (on the values of the functions Fni for i < LS(K)) in such a way
that for each a ∈ M of length n, the set Ua = {Fni (a) | i < LS(K)} is a
K-submodelMa ofM, and the assignment is consistent with T ′.
n = 0: Let M∅ 6K M of size LS(K) and U∅ = {F0i | i < LS(K)} an

enumeration of its universe.
n→ n+ 1: let Ma 6K M of size LS(K) extend the union of the Ub’s

for b a subtuple of a. Now enumerateUa by {Fni (a) | i < LS(K)}, in such
a way that Fni (a) = ai for i < n+ 1.

Check thatM ′ |= T ′ and omits Γ ′.
Now, if M ∈ PC(L, T ′, Γ ′) then let M ′ |= T ′ omitting Γ ′ be such that

M ′ � L = M. By the omission of Γ ′, all sets Ua, for each a ∈ M, are
the universe of a submodel Ma ⊂ M, and Ma ∈ K. Now the K-system
(Ma | a ∈M) is clearly directed since Ma,Mb 6K Mab. Then we have
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that
⋃
a∈MMa ∈ K. Now, by the axiomatization of T ′, we have a ∈ Ua,

hence
⋃
a∈MMa =M. ThereforeM ∈ K. �

Corollary 2.4 (“Hanf” number of an AEC). If an AEC K has a model of
cardinality > i(2LS(K))+ then it has arbitrarily large models.

Proof Use the Hanf number for PC classes (this uses the unde�nability
of well orders). �

Theorem 2.5 (Shelah). Let (K,6K) be an AEC with amalgamation and ar-
bitrarily large models. If K is categorical in λ > LS(K) then it is µ-galois-
stable for each cardinal µ ∈ [LS(K), λ).

Proof Let K be as in the statement and assume that the conclusion fails
for some minimalµ ∈ [LS(K), λ). LetM ∈ Kµ be such that |ga−S(M)| >
µ. Now amalgamate overM all models containing realizations of types in
|ga − S(M)|. By AP and NMM we can without loss of generality assume
this amalgam is of size > λ, by Downward Löwenheim-Skolem, we can
�nd N1 ∈ Kλ with > µ realizations of types in |ga− S(M)|.

We restrict ourselves to the case λ regular - the proof can be extended
to arbitrary λ.

Now let K = PC(L, T ′, Γ ′). We can assume wlog that L ′ has Skolem
functions. SinceK has arbitrarily large models, it has Ehrenfeucht-Mostowski
models. Let N2 := EM(λ) � L, N2 ∈ K and |N2| = λ.

Claim 2.6. N2 realizes only µ many types of ga− S(M ′) for eachM ′ 6K
N2 of size µ.

Proof of claim (sketch). GivenM ′ 6K N2 of size µ, let J ⊂ λwith |J| =
µ and M ′ ⊂ EM(J) � L. Since (λ,<) is well-ordered, it can only realize
µ many {<}-types over J. Also, if a and b are sequences in λ realizing the
same cut over J, there exists (I ′,< ′) extending (λ,<) such that a and b
are automorphic over J in I ′ (e.g. I ′ = ω>λ). Then,

gatp(τ(a)/EM(J) � L;N ′) = gatp(τ(b)/EM(J) � L;N ′)
hence

gatp(τ(a)/M ′;N ′) = gatp(τ(b)/M ′;N ′)
(for any term τ of the Skolem language) Then N1 and N2 are two non-
isomorphic models in K, of size λ. This contradicts the hypothesis of cat-
egoricity in λ. �

2.2. Tameness and locality. Idea: “localizing” the condition of...
extending a map f that �xes a modelM in an aec K to a K-embedding:
• if no embedding f of the class that �xes M sends some N0 to some
N1 then

gatp(N0/M) 6= gatp(N1/M)
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• wewant: to localize this to checking that there is someM0 ∈ P∗κ(M)
and X0 ∈ Pκ(N0) such that

gatp(X0/M0) 6= gatp(f(X0)/M0)

De�nition 2.7 ((κ, λ)-tameness for µ, type shortness). Let κ < λ. An aec K
with AP and LS(K) 6 κ is
• (κ, λ)-tame for sequences of length µ if for every M ∈ K of size
λ, if p1 6= p2 are Galois types over M then there exists M0 ≺K M
with |M0| 6 κ such that

p1 �M0 6= p2 �M0

(where pi = gatp(Xi/M), Xi ordered in length µ, i = 1, 2)
• (κ, λ)-typeshort over models of cardinality µ if for everyM ∈ K of

size µ, if p1 6= p2 are Galois types over M and pi = gatp(Xi/M)
where Xi = (xi,α)α<λ, there exists I ⊂ λ of cardinality 6 κ such
that pI1 6= pI2:

gatp((x1,α)α∈I/M) 6= gatp((x2,α)α∈I/M).

The two notions are clearly dual (parameters/realizations):
• In tameness, a narrow orbit (�xing large models) is controlled by

the thicker orbits that approximate it (parameter locality),
• In type shortness, the orbit of a long sequence is controlled by the

narrower orbits of its subsequences (realization locality)...

Theorem 2.8 (Boney). If a K (with a monster) is categorical in µ and is
(< κ,µ)-tame for λ-length types, then K is (< κ,µ)-short for types over
λ-sized domains.

LetM,M ′ of size µ,N of size λ such that gatp(M/N) 6= gatp(M ′/N).
Use µ-categoricity to get f ∈ Aut(C) such that f �M :M ≈M ′.
Now, gatp(f(N)/M ′) 6= gatp(N/M ′): if equal, there is someh ∈ Aut(C/M ′)
so that h ◦ f(N) = N - so h ◦ f(M) = h(M ′) = M ′ so gatp(M/N) =
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gatp(M ′/N). Now we use the (< κ,µ)-tameness: getM− ∈ P∗κ(M
′) such

that gatp(f(N)/M−) 6= gatp(N/M−). Again as before gatp(f−1(M−)/N) 6=
gatp(M−/N). But f−1(M−) ∈ P∗κ(M). �

3. Day 3: Stability Theory for AECs (II).

We already have that (under AP and NMM) the categoricity of a class
K in a cardinal λ > LS(K) implies its galois-stability below λ. This
marks a beginning of stability theory for AECs. In this lecture we will
explore two notions of independence (de�nition and basic properties) and
more consequences of Galois-stability. I will describe in particular a re-
cent (2015) result of Boney, Grossberg, Kolesnikov and Vasey: canonicity
of forking independence (2015) [1]. Finally, I will discuss notions of super-
stability for abstract elementary classes - results of myself with Grossberg
and VanDieren [5], from around 2008, appearing soon in Math. Log. Quar-
terly.

3.1. Independence Notions for Galois Types: Splitting, Forking, etc.
The rôle of forking independence in the development of �rst order stabil-
ity theory is perhaps the most central in that theory. The de�nition comes
from 1970, but later Lascar (1974), Harnik and Harrington (1984) and �-
nally Kim and Pillay (1997) showed in various stages the canonicity of an
abstract independence notion connected to forking.

Boney and Grossberg,
abstract indep notion
I, M, B (base monotonicity), (C)κ, T (left transitivity), T∗ (right transi-

tivity), S, U, E = E0 + E1, L, E+ (strong extension)

De�nition 3.1. • |̂ has (C)κ (continuity) if whenever Â|
M
N there

exists A− ⊂ A, B− ⊂ N of size < κ such that for all N0 >K M
containing B−, A−|̂

M
N0.

• |̂ has T (left transitivity) ifM1 |̂
M0
N andM2 |̂

M1
NwithM0 6K

M1 6K M2, thenM2 |̂
M0
N.

• |̂ has T∗ (right transitivity) if A |̂
M0
M1 and A |̂

M1
M2 with

M0 6K M1 6K M2, then A |̂
M0
M2.

• (E) consists of the following two properties:
– E0 (Existence) - for all A, A |̂

M
M,

– E1 (Extension) - given a setA andM 6K N 6K N ′, ifA |̂
M
N

then there is A ′ ≡N A such that A ′ |̂
M
N ′.

• (L) Local character: κα( |̂ ) < ∞ for all α, where κα( |̂ ) :=
min{λ ∈ REG ∪ {∞} | for all µ = cf µ > λ, all increasing, con-
tinuous chains 〈Mi | i 6 µ〉 and all sets A of size α, there is some
i0 < µ such that A |̂

Mi0
Mµ.
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• (U) Uniqueness: If A |̂
M
N, A ′ |̂

M
N and f : A ≡M A ′ then

g : A ≡N A ′ for some g so that g � A = f � A.
• (S) Symmetry: If A |̂

M
N then there is M ′ >K M with A ⊂M ′

such that N |̂
M
M ′. If A is a model extending M one can take

M ′ = A.

nonsplitting

De�nition 3.2 (Forking - Boney-Grossberg). (Also called coheir indepen-
dence) - Fix a cardinal κ > LS(K). “Small” here means “size < κ”. For
M ≺ N let

A |̂
ch
M
N ⇔ for every smallA− ⊂ A and N− 6K N,

there is B− ⊂M such that B− ≡N− A−.

Fact 3.3 (Properties of coheir). Let κ > LS(K)

• |̂
ch has continuity for κ (C)κ and transitivity (T).

• IfM is κ-saturated, then |̂
ch has (E0) overM.

• If κ is furthermore regular and K is fully (< κ)-tame, fully (< κ)-
type short, has no weak (< κ)-order property and |̂

ch has existence
and extension (E) then |̂

ch has uniqueness (U) and symmetry (S).

The hardest work is to prove symmetry.

Theorem 3.4 (Additional properties of coheir). Right transitivity (T∗) can be
deduced from either symmetry and transitivity or from uniqueness (see [1,
5.9,5.11]). Local character follows from symmetry (see [1, 6.4]).

3.2. Canonicity of Forking Independence. This generalizes in some
sense Lascar/Harrington/Harnik - but is restricted to tame classes and re-
quires assuming the extension property.

Theorem 3.5 (Canonicity of coheir). Assume K is fully (< κ)-tame, fully
(< κ)-type short and weakly κ-Galois stable. Assume |̂

ch has (E). Then
• |̂

ch has (C)κ, (T), (T∗), (S), (U) and (L).
• Any independence notion satisfying (E) and (U) must be |̂

ch for
base models in K>κ.

3.3. Superstability, frames and limits. Uniqueness of Limit Models (GVV).

4. Day 4: Connections with Set Theory.

4.1. Strongly compact cardinals and tameness. Back to strongly com-
pact cardinals and tameness. Boney’s result, interaction between AECs
and large cardinals. Do directly with embeddings rather than ultraprod-
ucts?
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Theorem 4.1 (Boney). If κ is strongly compact and K is essentially below
κ (i.e. LS(K) < κ or K = Mod(ψ) for some Lκ,ω-sentence ψ) then K is
(< (κ+ LS(K)+, λ-tame and (< κ, λ)-typeshort for all λ.

The proof is direct, given the strength of the hypothesis. Boney and
Unger have proved (March 2015) that under strong inaccessibility of κ, the
(< κ, κ)-tameness of all aecs implies κ’s strong compactness. (?)

Notice that

(1) Every AEC K with LS(K) < κ is (< κ, κ)-tame

already implies V 6= L: Baldwin and Shelah constructed a counterex-
ample to (< κ, κ) starting from an almost free, non-free, non-Whitehead
group of cardinality κ. In L this may happen at any κ regular, not strongly
compact.

On the other hand, Hart-Shelah’s example of an Lω1,ω-sentence cate-
gorical in ℵ0,ℵ1, · · · ,ℵk but NOT in ℵk+2 shows that pushing tameness
FOR ALL aecs below ℵω is impossible.

4.2. Collapse / Other properties. Collapse. Tree properties.

4.3. Set Theoretic Dichotomies. Local theory.
Set theoretical dichotomies. Statement, sketch of the proof.

5. Appendix: more examples

Note: the topics in this lecture will be explored (in a di�erent style)
during the Colloquium lecture at IPM, on Wednesday 26.11.

5.1. Early examples.

5.2. The Oxford group - Quasiminimal AECs, covers.

5.3. Modular invariants. Various lines of interaction between Model The-
ory and subareas of Geometry have evolved in recent years (based on
earlier interactions centered around the emergence of geometric stabil-
ity theory). One of those lines, originally centered at Oxford around Boris
Zilber and his group of collaborators, has evolved from early exploration of
“pseudo-analytic” structures (the primal examples being �elds with pseudo-
exponentiation - the so-called Zilber �eld, various analytic covers, various
other “Zariski geometries”) to more recent variants. Among them stand
modular invariants: the classical j-mapping and higher-dimensional vari-
ants. More recently, Christopher Daw and Adam Harris (see [3] and [6])
studied the categoricity of structures capturing the j-mapping and several
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generalizations, and showed that for many of them categoricity is equiva-
lent to a condition on their Galois representations present in the Mumford-
Tate Conjecture. For the one-dimensional case Serre proved the conjecture;
for higher dimensional cases the equivalence between categoricity of an
associated structure (built as an Abstract Elementary Class, axiomatized
in the logic Lω1,ω) and (as yet unproven) versions of the Mumford-Tate
Conjecture also hold.

These results are not a singularity: interaction between the model theo-
retic properties of the j-function and their arithmetic geometry have been
revealed at the level of de�nability, quasi-minimality and categoricity.

Interaction between Model Theory and Geometry thus happens at the
level of various automorphic functions, beyond the classical j (further con-
nections between coe�cients of Fourier expansions of the j-function and
certain group representations).

In addition to these connections, there is also the development of the
Real Multiplication program (started by Manin) - one crucial step involves
a good de�nition of a quantum version of the j-function. There have been
various attempts in this direction; one of them, due to Gendron, is rooted
in another part of model theory: non-standard methods (see [2]).
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