Grandes cardinales virtuales y genéricos (y algo de teoría de modelos)

Andrés Villaveces

Seminario Teoría de Conjuntos - Univ. Andes / Abril de 2025

Universidad Nacional de Colombia / Bogotá

Contents

Axiomatizing AECs: logics with a tiny remnant of compactness?

Connections with large cardinals and forcing

Tameness and strongly compact cardinals

More Model Theory, More Set Theory

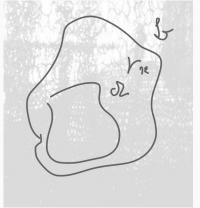
A story of compactness (and what remains in its absence)

Today, two topics:

- The quest for the natural logic for Abstract Elementary Classes (AECs): removing compactness, while keeping a very weak remnant! (The apparent paradox of a rich model theory with "very" pale compactness)
- Another logic similar to First Order, but much stronger: \mathbb{L}^1_{κ} . And some connections to strong and weak compactness properties. . .

AECs: why so much stability theory?

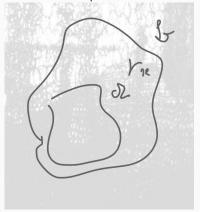
And our first question was the title of this slide!



In AECs, we replace from the start the usual extreme emphasis on φ , T, compactness

AECs: why so much stability theory?

And our first question was the title of this slide!



In AECs, we replace from the start the usual extreme emphasis on φ , T, compactness by more semantical notions: $\prec_{\mathcal{K}}$, f a morphism,

 $f \in Aut(\mathbb{C})$, etc.

```
\begin{array}{l} \varphi \\ \mathsf{T} \\ \mathsf{T}_0 \subseteq^{\mathsf{fin}} \mathsf{T} \\ \vdots \end{array}
```



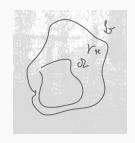
```
φ
Τ
Τ<sub>0</sub> ⊆<sup>fin</sup> Τ
:
```

emphasis shift towards 1980

φ T $T_0 \subseteq^{fin} T$

Instead of extracting \prec , f, etc. from T, φ , we turn \prec , f a strong embedding into the primitive notions!

emphasis shift towards 1980



 $\begin{array}{c}
\varphi \\
T \\
T_0 \subset^{\text{fin}} T
\end{array}$

Instead of extracting \prec , f, etc. from T, φ , we turn \prec , f a strong embedding into the primitive notions!

emphasis shift towards 1980

subgroup subring pure subring strong substructure

 $\begin{array}{c}
\varphi \\
\mathsf{T} \\
\mathsf{T}_0 \subset^{\mathsf{fin}} \mathsf{T}
\end{array}$

Instead of extracting \prec , f, etc. from T, φ , we turn \prec , f a strong embedding into the primitive notions!

emphasis shift towards 1980

subgroup subring pure subring strong substructure

 $\mathfrak{A} \prec_{\mathcal{K}} \mathfrak{B}$ "perfect" extension, algebraically closed, etc.

AEC - the axioms, briefly

Fix $\mathcal K$ be a class of au-structures, $\prec_{\mathcal K}$ a binary relation on $\mathcal K$.

Definition

 $(\mathcal{K}, \prec_{\mathcal{K}})$ is an abstract elementary class iff

- K, \prec_K are closed under isomorphism,
- $M, N \in \mathcal{K}, M \prec_{\mathcal{K}} N \Rightarrow M \subset N$,
- ≺_K is a partial order,
- (TV) $M \subset N \prec_{\mathcal{K}} \bar{N}$, $M \prec_{\mathcal{K}} \bar{N} \Rightarrow M \prec_{\mathcal{K}} N$,
- (\sum_LS) There is some $\kappa = LS(\mathcal{K}) \ge \aleph_0$ such that for every $M \in \mathcal{K}$, for every $A \subset |M|$, there is $N \prec_{\mathcal{K}} M$ with $A \subset |N|$ and $||N|| \le |A| + LS(\mathcal{K})$,
- (Unions of $\prec_{\mathcal{K}}$ -chains) A union of an arbitrary $\prec_{\mathcal{K}}$ -chain in \mathcal{K} belongs to \mathcal{K} , is a $\prec_{\mathcal{K}}$ -extension of all models in the chain and is the sup of the chain.

AECs, as described by a model theorist to a geometer

"Anatoly: For what's worth, AECs are a style of model theory that approaches mathematics in a more familiar fashion. Instead of syntax and semantic, one investigates class of structures that satisfy certain properties (like closure under limits) - indeed there is a purely category theory definition."

John Baldwin, in an email to Anatoly Libgober (2023)

Abstract Elementary Classes, in a nutshell

Abstract Elementary Classes are smoothly forward closed, generative and cumulative/coherent model classes

And really, a lot of examples (and model theory)

Many natural constructions in Mathematics are examples of AECs (or metric AECs)

- 1. Complete first order theories
- 2. Excellent, quasiminimal classes
- 3. Various classes axiomatizable in $L_{\omega_1,\omega}$ or $L_{\kappa\omega}$
- 4. Covers of Abelian algebraic groups

And really, a lot of examples (and model theory)

Many natural constructions in Mathematics are examples of AECs (or metric AECs)

- 1. Complete first order theories
- 2. Excellent, quasiminimal classes
- 3. Various classes axiomatizable in $L_{\omega_1,\omega}$ or $L_{\kappa\omega}$
- 4. Covers of Abelian algebraic groups
- Metric AEC stability theory started by Hirvonen and Hyttinen, Usvyatsov, and continued by Zambrano and V.
- Metric AECs and connections with operator algebras (Hirvonen, Hyttinen)
- 7. Model Theory of Modules (Hom, Ext₁,... Mazari-Armida)

And really, a lot of examples (and model theory)

Many natural constructions in Mathematics are examples of AECs (or metric AECs)

- 1. Complete first order theories
- 2. Excellent, quasiminimal classes
- 3. Various classes axiomatizable in $L_{\omega_1,\omega}$ or $L_{\kappa\omega}$
- 4. Covers of Abelian algebraic groups
- Metric AEC stability theory started by Hirvonen and Hyttinen, Usvyatsov, and continued by Zambrano and V.
- Metric AECs and connections with operator algebras (Hirvonen, Hyttinen)
- 7. Model Theory of Modules (Hom, $Ext_1,...$ Mazari-Armida)
- 8. AECs of C*-algebras (Argoty, Berenstein, V.)
- 9. Zilber analytic classes (pseudoexponentiation, j-map, Shimura)
- 10. Classes of Valued Fields...

Elusive, "embedded" definability?

In Stability/Classification Theory of AECs the inner workings depend very strongly on handling the following:

Elusive, "embedded" definability?

In Stability/Classification Theory of AECs the inner workings depend very strongly on handling the following:

- Indiscernible sequences and EM models,
- (Versions of) Morley Omitting Types [to transfer saturation, to transfer categoricity],
- and of course, many variants of "forking independence", very specially versions of "splitting" (weak definability of types)!

Elusive, "embedded" definability?

In Stability/Classification Theory of AECs the inner workings depend very strongly on handling the following:

- Indiscernible sequences and EM models,
- (Versions of) Morley Omitting Types [to transfer saturation, to transfer categoricity],
- and of course, many variants of "forking independence", very specially versions of "splitting" (weak definability of types)!

So, the question of finding **right notions of definability** responsible for all these inner workings is important...

Axiomatizing an AEC: attempts (old and new)

- Shelah, V. 2020,
- Leung 2021.

Fix $(\mathcal{K}, \prec_{\mathcal{K}})$ an AEC with LS $(\mathcal{K}) = \kappa$. We also assume wlog that all models in \mathcal{K} are of cardinality $\geq \kappa$.

Earlier results:

• Shelah's Presentation Theorem: K is $PC_{\kappa,2^{\kappa}}$:

Axiomatizing an AEC: attempts (old and new)

- Shelah, V. 2020,
- Leung 2021.

Fix $(\mathcal{K}, \prec_{\mathcal{K}})$ an AEC with LS $(\mathcal{K}) = \kappa$. We also assume wlog that all models in \mathcal{K} are of cardinality $\geq \kappa$.

Earlier results:

• Shelah's Presentation Theorem: \mathcal{K} is $PC_{\kappa,2^{\kappa}}$: There is $L'\supset L$, and there is ψ a sentence in $\mathbb{L}_{2^{\kappa^+},\omega}$, $|L'|\leq 2^{\kappa}$ such that $\mathcal{K}=\{\mathsf{M}\upharpoonright \mathsf{L}:\mathsf{M}\models\psi\}$,

Axiomatizing an AEC: attempts (old and new)

- Shelah, V. 2020,
- Leung 2021.

Fix $(\mathcal{K}, \prec_{\mathcal{K}})$ an AEC with LS $(\mathcal{K}) = \kappa$. We also assume wlog that all models in \mathcal{K} are of cardinality $\geq \kappa$.

Earlier results:

- Shelah's Presentation Theorem: K is PC_{κ,2^κ}: There is L' ⊃ L, and there is ψ a sentence in L_{2^{κ+},ω}, |L'| ≤ 2^κ such that K = {M ↑ L : M |= ψ},
- Shelah-Vasey: If $LS(\mathcal{K}) = \aleph_0$, \mathcal{K} is \aleph_0 -stable and has the \aleph_0 -AP, and $I(\aleph_0, \mathcal{K}) \leq \aleph_0$ then \mathcal{K} is PC_{\aleph_0} .

• Kueker: if $\mathcal K$ is closed under \equiv_{∞,ω_1} -equivalence, L is countable, then there is an $\mathsf L_{\infty,\omega}$ -sentence axiomatizing $\mathcal K$,

- Kueker: if K is closed under \equiv_{∞,ω_1} -equivalence, L is countable, then there is an $L_{\infty,\omega}$ -sentence axiomatizing K,
- Shelah, V. (2020): For arbitrary AECs \mathcal{K} , we provide a sentence in $\mathbb{L}_{\mathfrak{I}_{2}(\kappa)^{+3},\kappa^{+}}$, in the same vocabulary L of \mathcal{K} , axiomatizing \mathcal{K} ,

- Kueker: if $\mathcal K$ is closed under \equiv_{∞,ω_1} -equivalence, L is countable, then there is an $\mathsf L_{\infty,\omega}$ -sentence axiomatizing $\mathcal K$,
- Shelah, V. (2020): For arbitrary AECs \mathcal{K} , we provide a sentence in $\mathbb{L}_{\beth_2(\kappa)^{+3},\kappa^+}$, in the same vocabulary L of \mathcal{K} , axiomatizing \mathcal{K} ,
- Leung (2021): For arbitrary AECs \mathcal{K} , a sentence in $\mathbb{L}_{(2^{\kappa})^+),\kappa^+}(\omega\cdot\omega)$, in the same vocabulary L of \mathcal{K} but with a "game quantifier", axiomatizing \mathcal{K} ,

- Kueker: if K is closed under \equiv_{∞,ω_1} -equivalence, L is countable, then there is an $L_{\infty,\omega}$ -sentence axiomatizing K,
- Shelah, V. (2020): For arbitrary AECs \mathcal{K} , we provide a sentence in $\mathbb{L}_{\mathfrak{I}_{2}(\kappa)^{+3},\kappa^{+}}$, in the same vocabulary L of \mathcal{K} , axiomatizing \mathcal{K} ,
- Leung (2021): For arbitrary AECs \mathcal{K} , a sentence in $\mathbb{L}_{(2^{\kappa})^{+}),\kappa^{+}}(\omega\cdot\omega)$, in the same vocabulary L of \mathcal{K} but with a "game quantifier", axiomatizing \mathcal{K} ,
- Shelah, V. (2022). A better bound: we reduce the complexity of the sentence to $\mathbb{L}_{(2^{\kappa})^{+},\kappa^{+}}$, in the original vocabulary!

2020

Shelah-V.

$$\mathcal{K} = \mathsf{Mod}(\psi_{\mathcal{K}})$$
$$\psi_{\mathcal{K}} \in \mathbb{L}_{\beth_2(\kappa)^{+3},\kappa^+}$$

in vocabulary L

2021

Leung

$$\mathcal{K} = \mathsf{Mod}\left(\psi_{\mathsf{Leung}}\right)$$

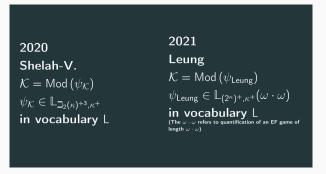
$$\psi_{\mathsf{Leung}} \in \mathbb{L}_{(2^{\kappa})^+,\kappa^+}(\omega \cdot \omega)$$

in vocabulary L

(The $\omega\cdot\omega$ refers to quantification of an EF game of length $\omega\cdot\omega$)

 $\begin{array}{lll} \textbf{2020} & \textbf{2021} \\ \textbf{Shelah-V.} & \textbf{Leung} \\ \mathcal{K} = \mathsf{Mod}\left(\psi_{\mathcal{K}}\right) & \mathcal{K} = \mathsf{Mod}\left(\psi_{\mathsf{Leung}}\right) \\ \psi_{\mathcal{K}} \in \mathbb{L}_{\beth_2(\kappa)^{+3},\kappa^+} & \text{in vocabulary L} \\ & \textbf{in vocabulary L} & \textbf{(The } \omega \cdot \omega \text{ refers to quantification of an EF game of length } \omega \cdot \omega) \end{array}$

a better logic,



a better logic, In 2022, a better bound: in
$$\mathbb{L}_{(2^\kappa)^+,\kappa^+}$$

a better bound, with the high price of using
$$\forall x_0 \exists y_0 \dots \forall x_i \exists x_i \dots, \ (i < \omega \cdot \omega)$$

2020

Shelah-V.

$$\mathcal{K} = \mathsf{Mod}(\psi_{\mathcal{K}})$$
$$\psi_{\mathcal{K}} \in \mathbb{L}_{\beth_2(\kappa)^{+3},\kappa^+}$$

$$\psi_{\mathcal{K}} \in \mathbb{L}_{\beth_2(\kappa)^{+3},\kappa^+}$$

in vocabulary L

a better logic,

In 2022, a better bound: in

$$\mathbb{L}_{(2^{\kappa})^+,\kappa^+}$$

AMERICAN MATHEMATICAL SOCIETY Volume 150, Number 1, January 2022, Pages 371-380 https://doi.org/10.1090/proc/15688 Article electronically published on October 19, 2021

INFINITARY LOGICS AND ABSTRACT ELEMENTARY CLASSES

SAHARON SHELAH AND ANDRÉS VILLAVECES

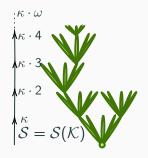
(Communicated by Heike Mildenberger)

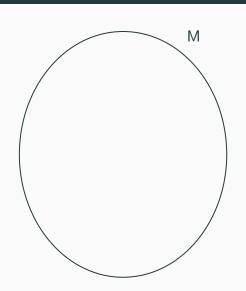
Abstract. We prove that every abstract elementary class (a.e.c.) Löwenheim-Skolem-Tarski (LST) number κ and vocabulary τ of cardi- $\leq \kappa$ can be axiomatized in the logic $\mathbb{L}_{2\gamma(\kappa)^{+++},\kappa^{+}}(\tau)$. An a.e.c. K in vo lary τ is therefore an EC class in this logic, rather than merely a PC class. constitutes a major improvement on the level of definability previously by the Presentation Theorem. As part of our proof, we define the cantree $S = S_K$ of an a.e.c. K. This turns out to be an interesting combina object of the class, beyond the aim of our theorem. Furthermore, we a connection between the sentences defining an a.e.c. and the relatively infinitary logic L_{λ}^{1} .

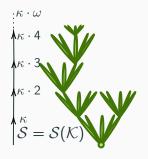
Introduction

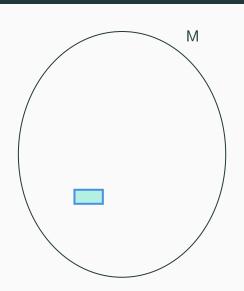
Given an abstract elementary class (a.e.c.) K, in vocabulary τ o LST(K), we prove the two following results:

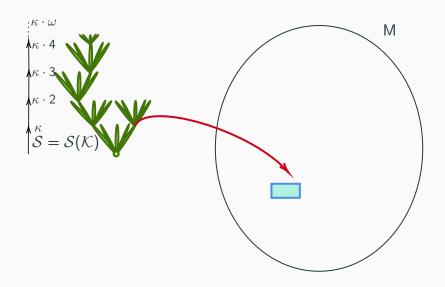
. We provide an infinitary contense in the same mechalary a

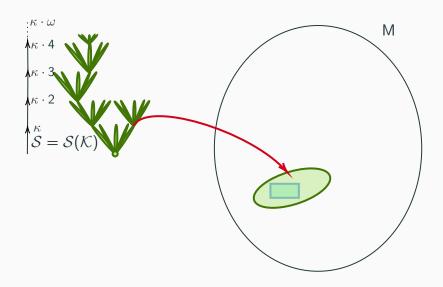


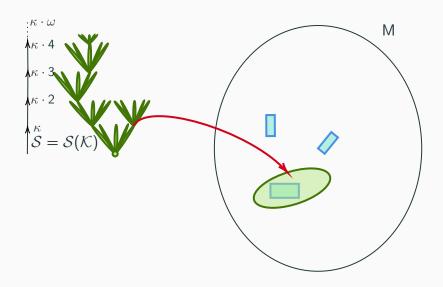


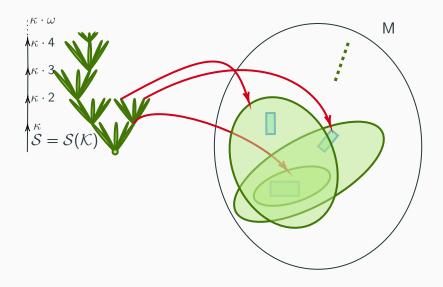


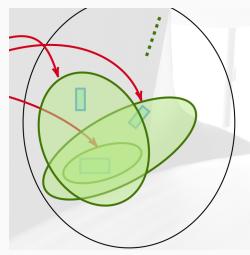












Idea of our axiomatization: Fix an L-structure M. How can we realize M as a direct limit of small models $N \in \mathcal{K}$? (small = size $\kappa = LS(\mathcal{K})$)

Realizing an arbitrary model as a limit

$$M = \varinjlim\{N \subseteq M | N \in \mathcal{K}\} \qquad ???$$

(Of course, we need a lot of constraints!)

Towards this goal

We use the canonical tree of K: models of size $\kappa = LS(K)$, with universes

$$\kappa, \kappa + \kappa, \kappa + \kappa + \kappa, \dots$$

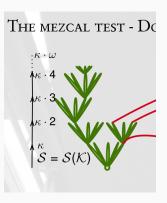
and a whole "system of $\prec_{\mathcal{K}}$ -elementary embeddings" between those models:

We use the canonical tree of \mathcal{K} : models of size $\kappa = \mathsf{LS}(\mathcal{K})$, with universes

$$\kappa, \kappa + \kappa, \kappa + \kappa + \kappa, \dots$$

and a whole "system of $\prec_{\mathcal{K}}\text{-elementary embeddings"}$ between those models:

 $\mathcal{S}_{\mathcal{K}}$: the canonical tree of \mathcal{K} . In $\mathcal{S}_{\mathcal{K}}$, $N_1 \triangleleft N_2$ iff $N_1 \prec_{\mathcal{K}} N_2$.



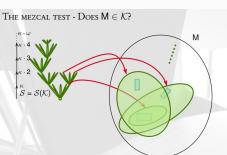
We now use syntax to...

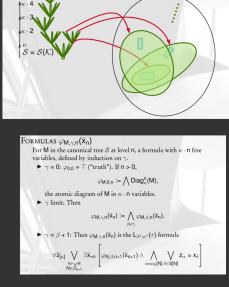
...to "test" the model M - the test membership in $\mathcal K$

M must "pass" $\beth_2(\kappa)^{++} + 2$ tests

(a newer proof reduces this number to $(2^{\kappa})^+$)

Sen tences, "approximating" K:

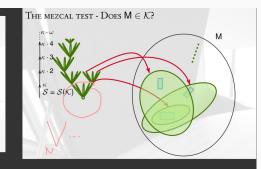


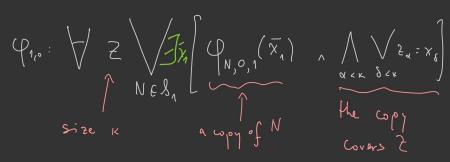


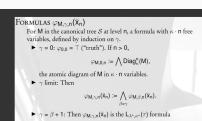
the atomic diagram of M in
$$\kappa$$
 · n variables.
 \blacktriangleright γ limit: Then
$$\varphi_{M,\gamma,n}(\bar{x}_n) := \bigwedge_{\beta \in \mathcal{O}} \varphi_{M,\beta,n}(\bar{x}_n).$$

$$\blacktriangleright \ \gamma = \beta + 1 \text{: Then } \varphi_{\mathsf{M},\gamma,\mathsf{n}}(\bar{\mathsf{x}}_\mathsf{n}) \text{ is the } \mathsf{L}_{\lambda^+,\kappa^+}(\tau) \text{ formula}$$

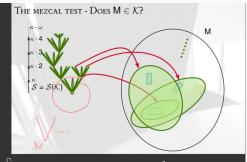
$$\forall \overline{z}_{[\kappa]} \bigvee_{N \vdash_{K} M} \exists \overline{x}_{\bowtie n} \left[\varphi_{N,\beta,n+1}(\overline{x}_{n+1}) \land \bigwedge_{\alpha < \alpha_{n}[N]} \bigvee_{\delta \in S[N]} z_{\alpha} = x_{\delta} \right]$$

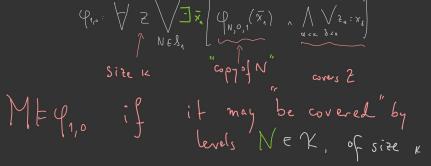


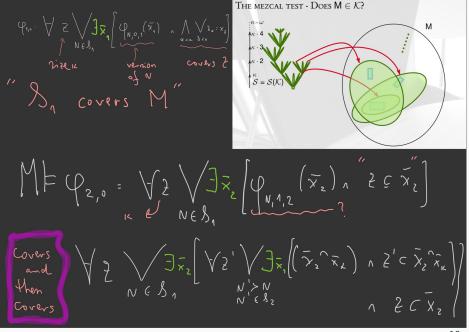


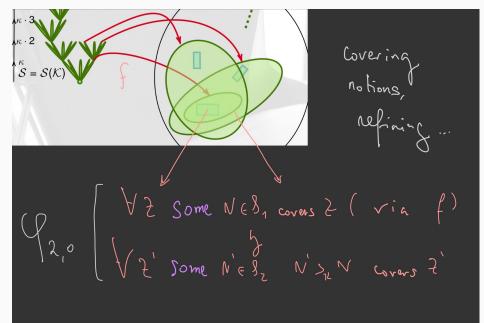


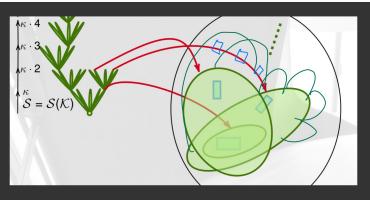
 $\forall \bar{z}_{[\kappa]} \bigvee_{N \succeq_{\Gamma} M} \exists \bar{x}_{=n} \quad \varphi_{N,\beta,n+1}(\bar{x}_{n+1}) \land \bigwedge_{\alpha < \alpha, n[N]} \bigvee_{\delta \in S[N]} z_{\alpha} = x_{\delta}$





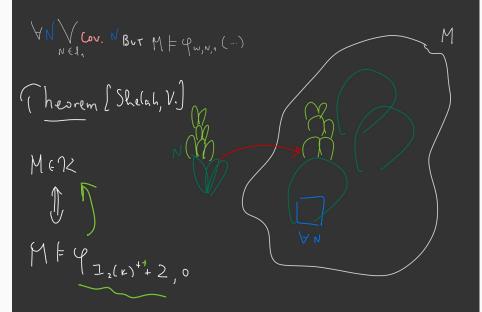




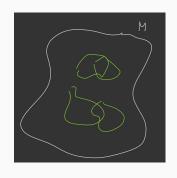


93,0; better cover yet ...
Problem: Mis big

As this way of covering may be insufficient, we transfinitely: W+1,0 YN V Covers N BUT M F (Pw, N, 1)

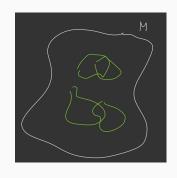


Key Idea



Inside M (because of the sentences $\varphi_{\alpha,0}$ it satisfies), there are "densely" many models of size κ , from the class \mathcal{K} .

Key Idea

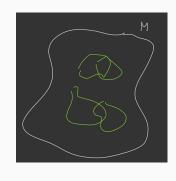


Inside M (because of the sentences $\varphi_{\alpha,0}$ it satisfies), there are "densely" many models of size κ , from the class \mathcal{K} .

These form a \subseteq -directed system (again, the sentences. . .).

Now, this $\underline{\text{per se}}$ would be too weak to guarantee that $M \in \mathcal{K}$.

Key Idea



Inside M (because of the sentences $\varphi_{\alpha,0}$ it satisfies), there are "densely" many models of size κ , from the class \mathcal{K} .

These form a \subseteq -directed system (again, the sentences...).

Now, this per se would be too weak to guarantee that $M \in \mathcal{K}$.

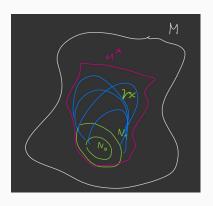
However..., since $M \models \varphi_{\beth_2(\kappa)^+ + 2,0}...$ and the \subseteq -directed system will also turn out to be a $\prec_{\mathcal{K}}$ -directed system!

Why $\prec_{\mathcal{K}}$ -directed? ("Model-completeness" inside M)

However..., as M $\models \varphi_{\beth_2(\kappa)^+ + 2,0}...$ the system will also turn out to be a $\prec_{\mathcal{K}}$ -directed system!

Why $\prec_{\mathcal{K}}$ -directed? ("Model-completeness" inside M)

However..., as M $\models \varphi_{\beth_2(\kappa)^++2,0}...$ the system will also turn out to be a $\prec_{\mathcal{K}}$ -directed system!

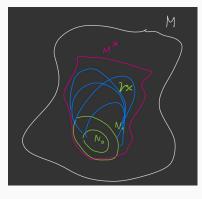


Two combinatorial arguments:

- In 2020, using a partition relation for well-founded trees due to Komjáth and Shelah.
- In 2021, we reduced complexity:

Why $\prec_{\mathcal{K}}$ -directed? ("Model-completeness" inside M)

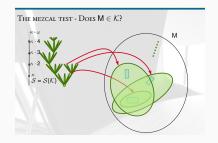
However..., as $M \models \varphi_{\beth_2(\kappa)^+ + 2,0}...$ the system will also turn out to be a $\prec_{\mathcal{K}}$ -directed system!



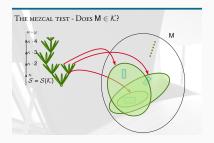
Two combinatorial arguments:

- In 2020, using a partition relation for well-founded trees due to Komjáth and Shelah.
- In 2021, we reduced complexity:

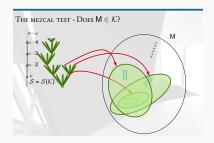
Assuming $N_0 \not\prec_{\mathcal{K}} N_1$, using the tree $\mathcal{S}_{\mathcal{K}}$ and the fact that $M \models \varphi_{\alpha,0}$, we build a **tree of models** converging to the same model - by the axioms of AEC's we may conclude that $N_0 \prec_{\mathcal{K}} N_1$!



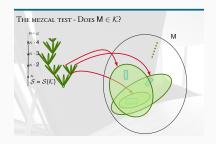
 \bullet Build the tree $\mathcal{S}_{\mathcal{K}}$ (ω levels $\kappa \cdot \mathbf{n}, \ \mathbf{n} < \omega$)



- Build the tree $\mathcal{S}_{\mathcal{K}}$ (ω levels $\kappa \cdot \mathbf{n}$, $\mathbf{n} < \omega$)
- Build sentences $\varphi_{0,0}, \varphi_{1,0}, \ldots, \varphi_{\alpha,0}, \ldots$ capturing ever more "history" of embeddings

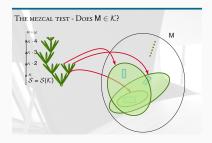


- Build the tree $\mathcal{S}_{\mathcal{K}}$ (ω levels $\kappa \cdot \mathsf{n}$, $\mathsf{n} < \omega$)
- Build sentences $\varphi_{0,0}, \varphi_{1,0}, \ldots, \varphi_{\alpha,0}, \ldots$ capturing ever more "history" of embeddings
- M $\models \varphi_{\alpha,0}$ for α "high enough" implies (by quite non-trivial combinatorics) that. . .



- Build the tree $\mathcal{S}_{\mathcal{K}}$ (ω levels $\kappa \cdot \mathbf{n}$, $\mathbf{n} < \omega$)
- Build sentences $\varphi_{0,0}, \varphi_{1,0}, \ldots, \varphi_{\alpha,0}, \ldots$ capturing ever more "history" of embeddings
- $M \models \varphi_{\alpha,0}$ for α "high enough" implies (by quite non-trivial combinatorics) that... M is a $\prec_{\mathcal{K}}$ -direct limit of small models from the class \mathcal{K} (and therefore in \mathcal{K})!

Leung's strategy:



Leung's strategy has similarities, but he replaces the combinatorics by the game quantifier

$$\forall x_0 \exists y_0 \forall x_1 \exists y_1 \ldots \forall x_i \exists y_i \ldots$$

of length $\omega \cdot \omega$ (this has unclear semantics...).

Some New Issues

The axiomatization shows new aspects of the AEC ${\cal K}$, such as:

- A fine analysis of complexity of K,
- Connections with categoricity and stability (NIP),

Some New Issues

The axiomatization shows new aspects of the AEC ${\cal K}$, such as:

- A fine analysis of complexity of K,
- Connections with categoricity and stability (NIP),
- Logical properties controlling $\psi_{\mathcal{K}}$,
- Behaviour of $\prod_{i \in I} \mathfrak{A}_i / \mathcal{U}$ in terms of the AEC logic,
- Bi-interpretability in AECs (Galois theory),

Some New Issues

The axiomatization shows new aspects of the AEC ${\cal K}$, such as:

- A fine analysis of complexity of K,
- Connections with categoricity and stability (NIP),
- Logical properties controlling $\psi_{\mathcal{K}}$,
- Behaviour of $\prod_{i \in I} \mathfrak{A}_i / \mathcal{U}$ in terms of the AEC logic,
- Bi-interpretability in AECs (Galois theory),
- K's behaviour in forcing extensions,
- ullet \mathcal{K} 's behaviour under large cardinal embeddings

$$j: V \rightarrow_{\lambda} M \dots$$

Plan

Axiomatizing AECs: logics with a tiny remnant of compactness?

Connections with large cardinals and forcing

Tameness and strongly compact cardinals

More Model Theory, More Set Theory

• Schindler (2000): remarkable cardinals are equiconsistent with "Th(L(\mathbb{R})) cannot be changed by proper forcing."

- Schindler (2000): remarkable cardinals are equiconsistent with "Th(L(\mathbb{R})) cannot be changed by proper forcing."
- Later, the (complicated) definition of remarkability was proved by Schindler to be equivalent to being "virtually supercompact".

- Schindler (2000): remarkable cardinals are equiconsistent with "Th(L(\mathbb{R})) cannot be changed by proper forcing."
- Later, the (complicated) definition of remarkability was proved by Schindler to be equivalent to being "virtually supercompact".
- Idea: a large cardinal defined by properties of an elementary embedding

$$j: V \rightarrow_{\kappa} M$$

can be "virtualized" by requiring the embedding to exist in a set-forcing extension of V.

- Schindler (2000): remarkable cardinals are equiconsistent with "Th(L(\mathbb{R})) cannot be changed by proper forcing."
- Later, the (complicated) definition of remarkability was proved by Schindler to be equivalent to being "virtually supercompact".
- Idea: a large cardinal defined by properties of an elementary embedding

$$j:V\to_{\kappa}M$$

can be "virtualized" by requiring the embedding to exist in a set-forcing extension of V.

• Virtual(ized) large cardinals are still large cardinals, but are now in the neighborhood of an ω -Erdős cardinal; they are consistent with L.

• A cardinal κ is **virtually supercompact** (remarkable) if for every $\lambda > \kappa$, there is $\alpha > \lambda$ and a transitive M with ${}^{\lambda}M \subseteq M$ such that there is a virtual elementary embedding $j: V_{\alpha} \to_{\kappa} M$ with $j(\kappa) > \lambda$.

- A cardinal κ is **virtually supercompact** (remarkable) if for every $\lambda > \kappa$, there is $\alpha > \lambda$ and a transitive M with ${}^{\lambda}M \subseteq M$ such that there is a virtual elementary embedding $j: V_{\alpha} \to_{\kappa} M$ with $j(\kappa) > \lambda$.
- Similarly, virtually Woodin, virtually extendible, virtually measurable, etc.

- A cardinal κ is **virtually supercompact** (remarkable) if for every $\lambda > \kappa$, there is $\alpha > \lambda$ and a transitive M with ${}^{\lambda}M \subseteq M$ such that there is a virtual elementary embedding $j: V_{\alpha} \to_{\kappa} M$ with $j(\kappa) > \lambda$.
- Similarly, virtually Woodin, virtually extendible, virtually measurable, etc.
- A cardinal κ is virtually extendible if for every α > κ, there is a virtual elementary embedding j : V_α →_κ V_β with j(κ) > α.

Back to logic: the strong compactness cardinal of a logic

In 1971, Magidor proved that extendible cardinals are **strong** compactness cardinals for second-order infinitary logic $\mathbb{L}_{\kappa,\kappa}^{\text{II}}$. This means that every $< \kappa$ -satisfiable theory in this logic is satisfiable.

Back to logic: the strong compactness cardinal of a logic

In 1971, Magidor proved that extendible cardinals are strong compactness cardinals for second-order infinitary logic $\mathbb{L}^{II}_{\kappa,\kappa}$. This means that every $<\kappa$ -satisfiable theory in this logic is satisfiable.

ADDED later: This was generalized by Fuchino and Sakai to weak compactness cardinals for second-order infinitary logic $\mathbb{L}_{\kappa,\kappa}^{\text{II}}$.

In their preprint Model Theoretic Characterizations of Large Cardinals, Boney, Dimopoulos, Gitman and Magidor [BDGM] generalize Magidor's early result to virtually extendible cardinals.

Theorem (BDGM)

 κ is virtually extendible <u>iff</u> every $< \kappa$ -satisfiable $\mathbb{L}_{\kappa,\kappa}^{\mathsf{II}}$ -theory has a... **pseudo-model**.

Back to logic: the strong compactness cardinal of a logic

In 1971, Magidor proved that extendible cardinals are **strong** compactness cardinals for second-order infinitary logic $\mathbb{L}_{\kappa,\kappa}^{\text{II}}$. This means that every $< \kappa$ -satisfiable theory in this logic is satisfiable.

ADDED later: This was generalized by Fuchino and Sakai to **weak** compactness cardinals for second-order infinitary logic $\mathbb{L}^{II}_{\kappa,\kappa}$.

In their preprint Model Theoretic Characterizations of Large Cardinals, Boney, Dimopoulos, Gitman and Magidor [BDGM] generalize Magidor's early result to virtually extendible cardinals.

Theorem (BDGM)

 κ is virtually extendible <u>iff</u> every $< \kappa$ -satisfiable $\mathbb{L}_{\kappa,\kappa}^{\mathsf{II}}$ -theory has a... **pseudo-model**.

They introduce the <u>filtering</u> of "being a model" (compactness) to "being a pseudo-model" (pseudo-compactness) and get the equivalence with virtuality.

Pseudo-models and forth-systems

So... what are these "filtered" models?

Pseudo-models and forth-systems

So... what are these "filtered" models?

Definition

Let T be a τ -theory in some logic \mathcal{L} , let M be a τ^* -structure.

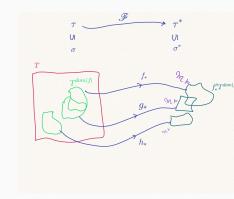
A forth system $\mathcal F$ from τ to τ^* is a collection of renamings $f:\sigma\to\sigma^*$, $f\in\mathcal F$ with σ,σ^* finite subsets of τ,τ^* respectively, such that

- 1. $\emptyset \in \mathcal{F}$,
- 2. If $f \in \mathcal{F}$ and $\tau_0 \subseteq^{fin} \tau$ then there is $g \in \mathcal{F}$ with $f \subseteq g$ and $\tau_0 \subseteq dom(g)$

M is a **pseudomodel** of T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*T^{dom(f)}$.

The notion of pseudomodel deals with

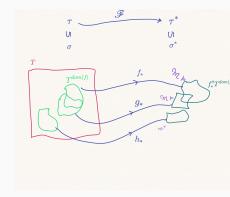
 localizing in coherent ways (sheaf-like construction) the notion of being a model...



M is a **pseudomodel** for T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*T^{\mathsf{dom}(f)}$

The notion of pseudomodel deals with

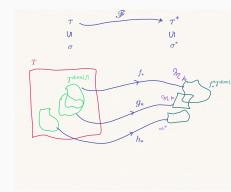
- localizing in coherent ways (sheaf-like construction) the notion of being a model...
- through forth-systems on vocabularies,



M is a **pseudomodel** for T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*T^{\mathsf{dom}(f)}$

The notion of pseudomodel deals with

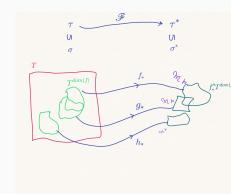
- localizing in coherent ways (sheaf-like construction) the notion of being a model...
- through forth-systems on vocabularies,
- connected with forcing notions whose generic is a **bijection** $f: \tau \to \tau^*$.



M is a **pseudomodel** for T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*\mathsf{T}^{\mathsf{dom}(f)}$

The notion of pseudomodel deals with

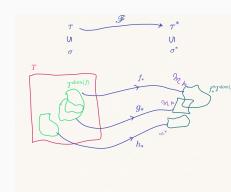
- localizing in coherent ways (sheaf-like construction) the notion of being a model...
- through forth-systems on vocabularies,
- connected with forcing notions whose generic is a **bijection** $f: \tau \to \tau^*$.
- From this bijection one constructs
 j: V_α →_κ V_β. (All of this may be encoded in a correct theory in L^{II}_{κ·κ·}.)



M is a **pseudomodel** for T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*T^{\mathsf{dom}(f)}$

The notion of pseudomodel deals with

- localizing in coherent ways (sheaf-like construction) the notion of being a model...
- through forth-systems on vocabularies,
- connected with forcing notions whose generic is a **bijection** $f: \tau \to \tau^*$.
- From this bijection one constructs
 j: V_α →_κ V_β. (All of this may be encoded in a correct theory in L^{II}_{κ,κ}.)
- The other direction uses the virtual embedding to obtain the forth system.

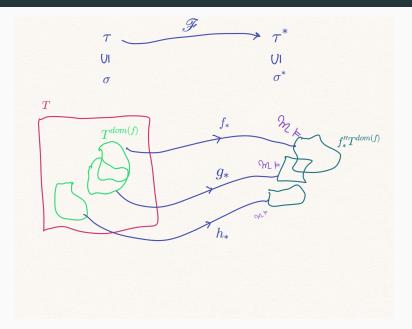


M is a **pseudomodel** for T if there is a forth system \mathcal{F} from τ to τ^* such that for every $f \in \mathcal{F}$, $M \models f''_*\mathsf{T}^{\mathsf{dom}(f)}$

Motto

Forth-systems between vocabularies ≡ forcing notions for virtuality

Pseudomodels



Plan

Axiomatizing AECs: logics with a tiny remnant of compactness?

Connections with large cardinals and forcing

Tameness and strongly compact cardinals

More Model Theory, More Set Theory

The Shelah Conjecture (early version)

A key test problem in model theory in the past two or three decades: finding versions of the Morley Theorem and Shelah's Categoricity Transfer theorems, for wider contexts: abstract elementary classes (semantically-centered extensions of the model theory of $L_{\lambda^+,\omega}(Q)$).

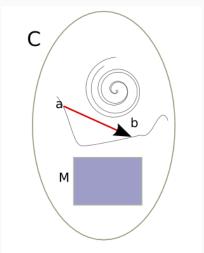
The Shelah Conjecture (early version)

A key test problem in model theory in the past two or three decades: finding versions of the Morley Theorem and Shelah's <u>Categoricity Transfer</u> theorems, for wider contexts: <u>abstract</u> <u>elementary classes</u> (semantically-centered extensions of the model theory of $L_{\lambda^+,\omega}(Q)$).

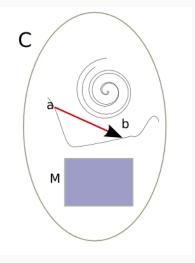
Conjecture (Shelah)

Given any cardinal λ , there exists μ_{λ} such that if ψ is an $\mathsf{L}_{\omega_1,\omega}$ -sentence that satisfies a "Löwenheim-Skolem" theorem down to λ and is categorical is <u>some</u> cardinality $\geq \mu_{\lambda}$, then it is categorical in <u>all</u> cardinalities above μ_{λ} .

The correct notion of $\underline{\text{type}}$ in an AEC (with the amalgamation and joint embedding properties (AP, JEP), and no maximal models (NMM):

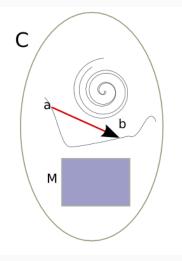


The correct notion of $\underline{\text{type}}$ in an AEC (with the amalgamation and joint embedding properties (AP, JEP), and no maximal models (NMM):



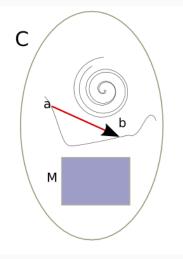
1. First build a "monster" (universal, model-homogeneous) model $\mathbb C$ in the class.

The correct notion of $\underline{\text{type}}$ in an AEC (with the amalgamation and joint embedding properties $(\underline{\text{AP}}, \underline{\text{JEP}})$, and no maximal models $(\underline{\text{NMM}})$:



- 1. First build a "monster" (universal, model-homogeneous) model $\mathbb C$ in the class.
- 2. Next define $ga-tp(a/M)=ga-tp(b/M) \text{ if and} \\ \text{only if there exists } f\in Aut(\mathbb{C}/M) \text{ s.t.} \\ f(a)=b.$
- Then (under AP, JEP, NMM) Galois types over M are <u>orbits</u> under the action of the group Aut_M(C), the automorphisms of the monster that fix M pointwise.

The correct notion of $\underline{\text{type}}$ in an AEC (with the amalgamation and joint embedding properties $(\underline{\text{AP}}, \underline{\text{JEP}})$, and no maximal models $(\underline{\text{NMM}})$:



- 1. First build a "monster" (universal, model-homogeneous) model $\mathbb C$ in the class.
- 2. Next define $ga-tp(a/M)=ga-tp(b/M) \text{ if and} \\ \text{only if there exists } f\in Aut(\mathbb{C}/M) \text{ s.t.} \\ f(a)=b.$
- Then (under AP, JEP, NMM) Galois types over M are <u>orbits</u> under the action of the group Aut_M(C), the automorphisms of the monster that fix M <u>pointwise</u>.
- 4. (This generalizes the classical (syntactic) notion of a type.)

Grossberg-VanDieren: tameness isolated

Around the year 2000 Grossberg and VanDieren proved:

Theorem

Let K be an AEC with amalgamation, joint embeddings, without maximal models. Then

Grossberg-VanDieren: tameness isolated

Around the year 2000 Grossberg and VanDieren proved:

Theorem

Let K be an AEC with amalgamation, joint embeddings, without maximal models. Then

if K is χ -tame and λ^+ -categorical for some $\lambda \geq \mathsf{LS}(K)^+ + \chi$, then K is μ -categorical for all $\mu \geq \lambda$.

Grossberg-VanDieren: tameness isolated

Around the year 2000 Grossberg and VanDieren proved:

Theorem

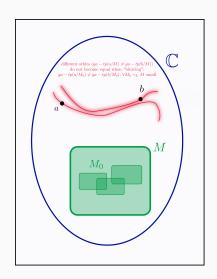
Let K be an AEC with amalgamation, joint embeddings, without maximal models. Then

if K is χ -tame and λ^+ -categorical for some $\lambda \geq \mathsf{LS}(K)^+ + \chi$, then K is μ -categorical for all $\mu \geq \lambda$.

Their proof built on a previous proof of the "downward" transfer by Shelah but has a crucial element: isolating the notion of <u>tameness</u> ("buried" in Shelah's proof of the downward part - fleshing out the notion allows Grossberg/VanDieren to prove the upward categoricity).

Localizing difference

Idea: "localizing" the condition of... extending a map f that fixes a model M in an aec $\mathcal K$ to a $\mathcal K$ -embedding:

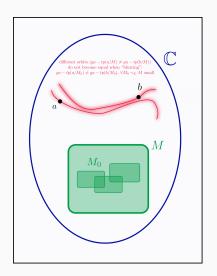


Localizing difference

Idea: "localizing" the condition of... extending a map f that fixes a model M in an aec $\mathcal K$ to a $\mathcal K$ -embedding:

• if no embedding f of the class that fixes M sends some N_0 to some N_1 then

$$\mathsf{gatp}(N_0/M) \neq \mathsf{gatp}(N_1/M)$$



Localizing difference

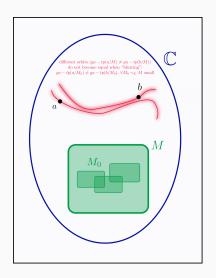
Idea: "localizing" the condition of... extending a map f that fixes a model M in an aec \mathcal{K} to a \mathcal{K} -embedding:

• if no embedding f of the class that fixes M sends some N_0 to some N_1 then

$$\mathsf{gatp}(N_0/M) \neq \mathsf{gatp}(N_1/M)$$

• we want: to localize this to checking that there is some $M_0 \in \mathcal{P}_{\kappa}^*(M)$ and $X_0 \in \mathcal{P}_{\kappa}(N_0)$ such that

$$gatp(X_0/M_0) \neq gatp(f(X_0)/M_0)$$



Getting Tameness from Large Cardinals

In 2013, Boney changed a bit the direction of the approach: why not look directly at the impact of large cardinals on $\underline{\mathsf{tameness}}$ and $\underline{\mathsf{similar}}$ notions?

Getting Tameness from Large Cardinals

In 2013, Boney changed a bit the direction of the approach: why not look directly at the impact of large cardinals on tameness and similar notions?

Theorem (Boney) If κ is strongly compact and $\mathcal K$ is essentially below κ (i.e. $LS(\mathcal K) < \kappa$ or $\mathcal K = Mod(\psi)$ for some $L_{\kappa,\omega}$ -sentence ψ) then $\mathcal K$ is $(<(\kappa+LS(K)^+,\lambda-tame\ for\ all\ \lambda.$

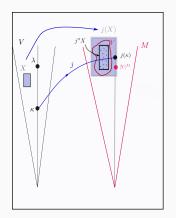
Boney and Unger proved (2015) that under strong inaccessibility of κ , the ($<\kappa,\kappa$)-tameness of all aecs implies κ 's strong compactness.

Reframing slightly Boney's proof

A cardinal κ is strongly compact iff for every $\lambda > \kappa$ there exists an elementary embedding $j:V\to M$ with critical point κ , and there exists some $Y\in M$ such that $j''\lambda\subset Y$ and $|Y|^M< j(\kappa)$.

Reframing slightly Boney's proof

A cardinal κ is strongly compact iff for every $\lambda > \kappa$ there exists an elementary embedding $j: V \to M$ with critical point κ , and there exists some $Y \in M$ such that $j''\lambda \subset Y$ and $|Y|^M < j(\kappa)$.

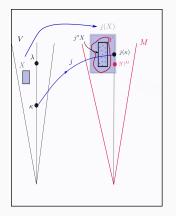


Definition

Let $j:V \to M$ be an elementary embedding. j has the (κ,λ) -cover property if for every X with $|X| \le \lambda$ there exists $Y \in M$ such that $j''X \subset Y \subset j(X)$ and $|Y|^M < j(\kappa)$.

Reframing slightly Boney's proof

A cardinal κ is strongly compact iff for every $\lambda > \kappa$ there exists an elementary embedding $j: V \to M$ with critical point κ , and there exists some $Y \in M$ such that $j''\lambda \subset Y$ and $|Y|^M < j(\kappa)$.



Definition

Let $j:V\to M$ be an elementary embedding. j has the $(\kappa,\lambda)\text{-}\underline{\text{cover property}}$ if for every X with $|X|\leq \lambda \text{ there exists }Y\in M \text{ such that}$ $j''X\subset Y\subset j(X) \text{ and }|Y|^M< j(\kappa).$

κ measurable	j has the (κ,κ) -cp
κ λ -strongly compact	j has the (κ, λ) -cp

The "image" of an AEC under $j:V\to M$

Let $(\mathcal{K}, \prec_{\mathcal{K}})$ be an AEC in τ . Shelah's Presentation Theorem gives

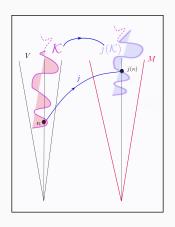
- $\tau' \supset \tau$.
- \bullet T' a au'-theory and
- Γ' a set of T' -types

such that

$$\mathcal{K} = \mathsf{PC}(\tau, \mathsf{T}', \Gamma') =$$

$$\{\mathsf{M}' \upharpoonright \tau \mid \mathsf{M}' \models \mathsf{T}' \text{ and } \mathsf{M}' \text{ omits } \Gamma'\},$$

We define $j(\mathcal{K})$ as the class $PC^{M}(j(\tau), j(T'), j(\Gamma'))$. By elementarity, $M \models j(\mathcal{K})$ is an AEC with LS number equal to $j(LS(\mathcal{K}))$.



Definition

Let $\mathcal{M} \in \mathcal{K}$ (a τ -AEC). Then $j(\mathcal{M})$ is a $j(\tau)$ -structure. We say that j respects \mathcal{K} if the following conditions hold:

Definition

Let $\mathcal{M} \in \mathcal{K}$ (a τ -AEC). Then $j(\mathcal{M})$ is a $j(\tau)$ -structure. We say that j respects \mathcal{K} if the following conditions hold:

• For every $\mathcal{M} \in j(\mathcal{K})$, $\mathcal{M} \upharpoonright \tau \in \mathcal{K}$,

Definition

Let $\mathcal{M} \in \mathcal{K}$ (a τ -AEC). Then $j(\mathcal{M})$ is a $j(\tau)$ -structure. We say that j respects \mathcal{K} if the following conditions hold:

- For every $\mathcal{M} \in j(\mathcal{K})$, $\mathcal{M} \upharpoonright \tau \in \mathcal{K}$,
- $\bullet \ \text{ for every } \mathcal{M}, \mathcal{N} \in j(\mathcal{K}), \ \mathcal{M} \prec_{j(\mathcal{K})} \mathcal{N} \ \text{implies } \mathcal{M} \upharpoonright \tau \prec_{\mathcal{K}} \mathcal{N} \upharpoonright \tau,$

Definition

Let $\mathcal{M} \in \mathcal{K}$ (a τ -AEC). Then $j(\mathcal{M})$ is a $j(\tau)$ -structure. We say that j respects \mathcal{K} if the following conditions hold:

- For every $\mathcal{M} \in j(\mathcal{K})$, $\mathcal{M} \upharpoonright \tau \in \mathcal{K}$,
- for every $\mathcal{M}, \mathcal{N} \in j(\mathcal{K})$, $\mathcal{M} \prec_{j(\mathcal{K})} \mathcal{N}$ implies $\mathcal{M} \upharpoonright \tau \prec_{\mathcal{K}} \mathcal{N} \upharpoonright \tau$,
- for every $\mathcal{M} \in \mathcal{K}$, $j''\mathcal{M} \prec_{\mathcal{K}} j(\mathcal{M}) \upharpoonright \tau$.

Examples

1. Let first $j:V\to M$ be a nontrivial elementary embedding with critical point κ and let $\mathcal K$ be an AEC with $LS(\mathcal K)<\kappa$. Then $\mathcal K=PC(\tau',T',\Gamma')$, with $|\tau'|+|T'|+|\Gamma'|<\kappa$; wlog we can assume $\tau',T',\Gamma'\in V_\kappa$ and therefore

$$j(\mathcal{K}) = PC^{M}(\tau, T', \Gamma') = (\mathcal{K} \cap M, \prec_{\mathcal{K}} \cap M),$$

(we have to use correctness of \models). Clearly, j respects \mathcal{K} .

Examples

1. Let first $j:V\to M$ be a nontrivial elementary embedding with critical point κ and let $\mathcal K$ be an AEC with $LS(\mathcal K)<\kappa$. Then $\mathcal K=PC(\tau',T',\Gamma')$, with $|\tau'|+|T'|+|\Gamma'|<\kappa$; wlog we can assume $\tau',T',\Gamma'\in V_\kappa$ and therefore

$$j(\mathcal{K}) = PC^{M}(\tau, T', \Gamma') = (\mathcal{K} \cap M, \prec_{\mathcal{K}} \cap M),$$

(we have to use correctness of \models). Clearly, j respects \mathcal{K} .

2. \mathcal{K} is given as $\mathsf{Mod}(\varphi)$ for φ in $\mathsf{L}_{\kappa,\omega}$, with $\prec_{\mathcal{K}} = \subset_{\mathcal{F}}^{\mathsf{TV}}$, \mathcal{F} some fragment of $\mathsf{L}_{\kappa,\omega}$. Then j respects \mathcal{K} .

We prove then that whenever \mathcal{K} is an AEC with LS(\mathcal{K}) < κ < λ , and j : V \rightarrow M has the (κ , λ)-cover property and respects \mathcal{K} then \mathcal{K} is (< κ , λ)-tame.

We prove then that whenever \mathcal{K} is an AEC with LS(\mathcal{K}) $< \kappa < \lambda$, and j : V \rightarrow M has the (κ , λ)-cover property and respects \mathcal{K} then \mathcal{K} is ($< \kappa$, λ)-tame.

Let $\mathcal{M} \in \mathcal{K}_{\lambda}$ and $p_1 = \text{gatp}(\vec{a}/\mathcal{M}, \mathcal{N}_1)$, $p_2 = \text{gatp}(\vec{b}/\mathcal{M}, \mathcal{N}_2)$ be two types such that for every $\mathcal{N} \prec_{\mathcal{K}} \mathcal{M}$ of size $< \kappa$ we have

$$p_1 \upharpoonright \mathcal{N} = p_2 \upharpoonright \mathcal{N}$$
.

(Here,
$$\vec{a} = (a_i)_{i \in I}$$
, $\vec{b} = (b_i)_{i \in I}$.)

Let now $Y \in M$ by such that $j''|\mathcal{M}| \subset Y \subset j(|\mathcal{M}|)$ and $|Y|^M < j(\kappa)$. But in M, $LS(j(\mathcal{K})) = j(LS(\mathcal{K})) < j(\kappa)$ so there is $\mathcal{M}' \in j(\mathcal{K})$ such that $Y \subset |\mathcal{M}'|, \ \|\mathcal{M}'\| < j(\kappa)$ and $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$; by transitivity, $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$.

Let now $Y \in M$ by such that $j''|\mathcal{M}| \subset Y \subset j(|\mathcal{M}|)$ and $|Y|^M < j(\kappa)$.

But in M, LS(j(\mathcal{K})) = j(LS(\mathcal{K})) < j(κ) so there is $\mathcal{M}' \in j(\mathcal{K})$ such that Y \subset | \mathcal{M}' |, $||\mathcal{M}'|| < j(\kappa)$ and $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$; by transitivity, $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$.

By elementarity, $M \models j(p_1) \upharpoonright \mathcal{M}' = j(p_2) \upharpoonright \mathcal{M}'$ (in $j(\mathcal{K})$) and therefore

Let now $Y \in M$ by such that $j''|\mathcal{M}| \subset Y \subset j(|\mathcal{M}|)$ and $|Y|^M < j(\kappa)$.

But in M, LS(j(\mathcal{K})) = j(LS(\mathcal{K})) < j(κ) so there is $\mathcal{M}' \in j(\mathcal{K})$ such that Y \subset | \mathcal{M}' |, $||\mathcal{M}'|| < j(\kappa)$ and $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$; by transitivity, $\mathcal{M}' \prec_{j(\mathcal{K})} j(\mathcal{M})$.

By elementarity, $M\models j(p_1)\upharpoonright \mathcal{M}'=j(p_2)\upharpoonright \mathcal{M}'$ (in $j(\mathcal{K})$) and therefore

$$\begin{aligned} p_1' &= \mathsf{gatp}(\mathsf{j}(\vec{\mathsf{a}})/\mathcal{M}' \upharpoonright \tau, \mathsf{j}(\mathcal{N}_1) \upharpoonright \tau) \\ &= \mathsf{gatp}(\mathsf{j}(\vec{\mathsf{b}})/\mathcal{M}' \upharpoonright \tau, \mathsf{j}(\mathcal{N}_2) \upharpoonright \tau) = p_2' \end{aligned}$$

in K (again by our hypothesis on j).

Since $j''\mathcal{M} \prec_{\mathcal{K}} j(\mathcal{M})$ we get that $j''\mathcal{M} \prec_{\mathcal{K}} \mathcal{M}' \upharpoonright \tau$ (coherence axiom), so restricting we have

$$\mathsf{gatp}(j(\vec{a})/j''\mathcal{M},j''\mathcal{N}_1) = \mathsf{gatp}(j(\vec{b})/j''\mathcal{M},j''\mathcal{N}_2).$$

Since $j''\mathcal{M} \prec_{\mathcal{K}} j(\mathcal{M})$ we get that $j''\mathcal{M} \prec_{\mathcal{K}} \mathcal{M}' \upharpoonright \tau$ (coherence axiom), so restricting we have

$$\mathsf{gatp}(j(\vec{a})/j''\mathcal{M},j''\mathcal{N}_1) = \mathsf{gatp}(j(\vec{b})/j''\mathcal{M},j''\mathcal{N}_2).$$

Restricting "above" we get

$$\mathsf{gatp}(j(\vec{a})/j''\mathcal{M},j''\mathcal{N}_1) = \mathsf{gatp}(j(\vec{b}))/j''\mathcal{M},j''\mathcal{N}_2),$$

and therefore

$$p = q$$
.

So, we use the λ -strong compactness of κ to show first that the embedding $j:V\to M$ has the (κ,λ) -property and respects $\mathcal K$ and then apply the previous. One may also show that the (κ,λ) -cover of $j:V\to M$ for $\kappa>\mathsf{LS}(\mathcal K)$ implies

So, we use the λ -strong compactness of κ to show first that the embedding $j:V\to M$ has the (κ,λ) -property and respects $\mathcal K$ and then apply the previous. One may also show that the (κ,λ) -cover of $j:V\to M$ for $\kappa>\mathsf{LS}(\mathcal K)$ implies

ullet $\mathcal{K}_{[\kappa,\lambda]}$ has no maximal models, and

So, we use the λ -strong compactness of κ to show first that the embedding $j:V\to M$ has the (κ,λ) -property and respects $\mathcal K$ and then apply the previous. One may also show that the (κ,λ) -cover of $j:V\to M$ for $\kappa>\mathsf{LS}(\mathcal K)$ implies

- ullet $\mathcal{K}_{[\kappa,\lambda]}$ has no maximal models, and
- $\mathcal{K}_{[\kappa,\lambda]}$ has the amalgamation property (provided all models of \mathcal{K}_{μ} are $<\kappa$ -universally closed for some $\mu\in[\kappa,\lambda]$).

So, we use the λ -strong compactness of κ to show first that the embedding $j:V\to M$ has the (κ,λ) -property and respects $\mathcal K$ and then apply the previous. One may also show that the (κ,λ) -cover of $j:V\to M$ for $\kappa>\mathsf{LS}(\mathcal K)$ implies

- ullet $\mathcal{K}_{[\kappa,\lambda]}$ has no maximal models, and
- $\mathcal{K}_{[\kappa,\lambda]}$ has the amalgamation property (provided all models of \mathcal{K}_{μ} are $<\kappa$ -universally closed for some $\mu\in[\kappa,\lambda]$).

So, we are in a good position to use the Grossberg-VanDieren theorem to conclude the consistency of the Shelah Categoricity Conjecture.

Plan

Axiomatizing AECs: logics with a tiny remnant of compactness?

Connections with large cardinals and forcing

Tameness and strongly compact cardinals

More Model Theory, More Set Theory

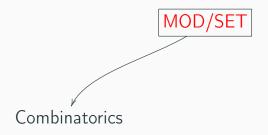
Other interactions Mod Th / Set Th

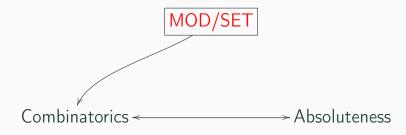
More on the two sides

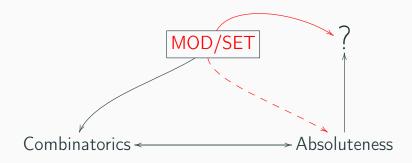
Oh... I had a very strange referee report on the (proper forcing) paper. I think Moschovakis was the editor. So he thought "Saharon is a model theorist" well, he knew me - I was even a year in UCLA before, so he sent it to a model theorist. And the problem was in model theory, [of the form] "the consistency of...", and the referee report said "well, there is very little model theory". . .

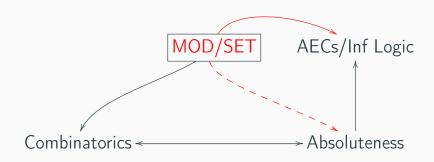
Saharon Shelah, in (forthcoming) interview, 2017.

MOD/SET









Virtualization of a Logic

A related notion: the virtualization of a logic. Now using forth-systems for models (and not for vocabularies, as before).

An \mathcal{L} -forth system \mathcal{P} from M to N (both τ – structures) is a collection of \mathcal{L} -elementary embeddings with the "forth property":

- 1. $\emptyset \in \mathcal{P}$,
- 2. if $f \in \mathcal{P}$, $a \in M$ then there is $g \supseteq f$ in \mathcal{P} such that $a \in dom(g)$.

Virtualization of a Logic

A related notion: the virtualization of a logic. Now using forth-systems for models (and not for vocabularies, as before).

An \mathcal{L} -forth system \mathcal{P} from M to N (both τ – structures) is a collection of \mathcal{L} -elementary embeddings with the "forth property":

- 1. $\emptyset \in \mathcal{P}$,
- 2. if $f \in \mathcal{P}$, $a \in M$ then there is $g \supseteq f$ in \mathcal{P} such that $a \in dom(g)$.

This is equivalent to playing the classical Ehrenfeucht-Fraïssé game but with \forall picking only challenges "from the left" (from M).

Virtualization of a logic (II)

[BDGM] use those \mathcal{L} -forth systems to get Löwenheim-Skolem-Tarski style characterizations of virtual cardinals: **the existence of a virtual elementary embedding** $f: M \to_{\kappa} N$ is equivalent to the existence of a forth system from M to N or that N satisfies the **virtualized logic** theory of M (or player \exists having a winning strategy in the half (virtual) game)...

A direction worth looking at: \mathbb{L}^1_{θ} for θ strongly compact

Shelah has been able to extract interesting model theory from the blend of the definition of his logic \mathbb{L}^1_θ under the additional assumption that θ is a strongly compact cardinal:

- A "Keisler-Shelah"-like theorem (\mathbb{L}^1_{θ} -elementarily equivalent models have isomorphic iterated ultrapowers)
- Special models (unions of ω -chains of iterated ultrapowers) are unique. . . giving easier proofs of Craig (essentially, showing Robinson and using compactness).
- Connections to stability theory.

The <u>methods</u> are connected with Malliaris-Shelah's constructions and also with careful use of saturation, not unlike the use of forth models in [BDGM].

So, what is \mathbb{L}^1_{κ} ?

- $\mathbb{L}_{\kappa\omega} \leq \mathbb{L}_{\kappa}^1 \leq \mathbb{L}_{\kappa\kappa}$,
- \mathbb{L}^1_{κ} has interpolation
- \mathbb{L}^1_{κ} is maximal among extensions of $\mathbb{L}_{\kappa\omega}$ with interpolation and a form of undefinability of well-order (Lindström-type characterization by Shelah, in 2012)
- \mathbb{L}^1_{κ} satisfies a weak version of unions of **countable** chains: if

$$\mathsf{M}_0 \prec_{\mathbb{L}_{\kappa\kappa}} \mathsf{M}_1 \prec_{\mathbb{L}_{\kappa\kappa}} \dots \mathsf{M}_n \dots$$

then

$$M_i \prec_{\mathbb{L}^1_{\kappa}} M_{\omega} \quad \forall i < \omega,$$

where $M_{\omega} = \bigcup_{n < \omega} M_n$... BUT

So, what is \mathbb{L}^1_{κ} ?

- $\mathbb{L}_{\kappa\omega} \leq \mathbb{L}_{\kappa}^1 \leq \mathbb{L}_{\kappa\kappa}$,
- \mathbb{L}^1_{κ} has interpolation
- \mathbb{L}^1_{κ} is maximal among extensions of $\mathbb{L}_{\kappa\omega}$ with interpolation and a form of undefinability of well-order (Lindström-type characterization by Shelah, in 2012)
- \mathbb{L}^1_{κ} satisfies a weak version of unions of **countable** chains: if

$$\mathsf{M}_0 \prec_{\mathbb{L}_{\kappa\kappa}} \mathsf{M}_1 \prec_{\mathbb{L}_{\kappa\kappa}} \ldots \mathsf{M}_n \ldots$$

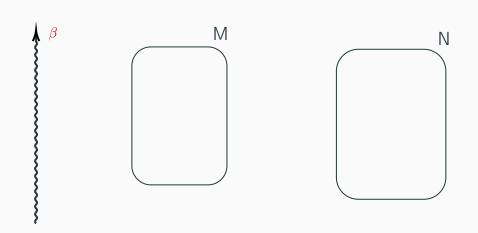
then

$$M_i \prec_{\mathbb{L}^1_\kappa} M_\omega \quad \forall i < \omega,$$

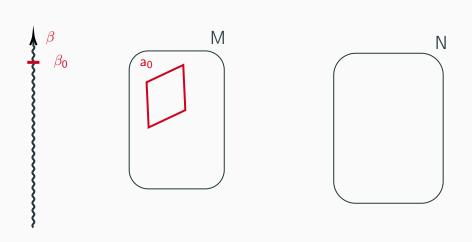
where $M_{\omega} = \bigcup_{n < \omega} M_n \dots$ BUT

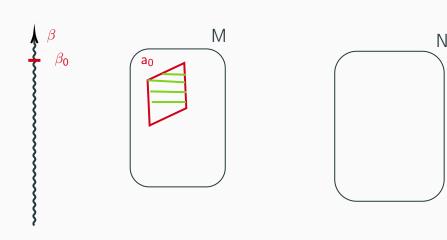
- \mathbb{L}^1_{κ} does not have a **syntax** in the usual sense (no recognizable formulas or sentences), but rather
- \mathbb{L}^1_{κ} has a game-theoretic "fake syntax" given by a "delayed game" (the Shelah game $\mathfrak{D}^{\beta}_{A}(M,N)$) . . .

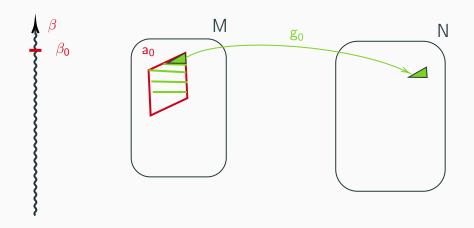
Shelah's game $\mathfrak{D}^{\beta}_{\theta}(M, N)$.

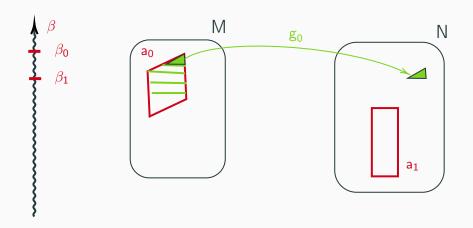


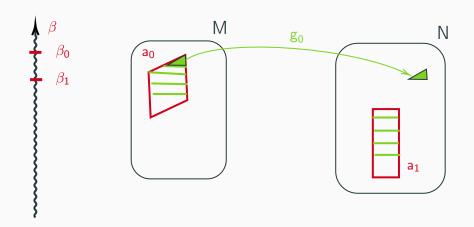
Shelah's game $\mathfrak{D}^{\beta}_{\theta}(\mathsf{M},\mathsf{N})$.

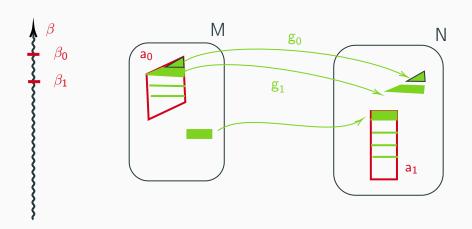


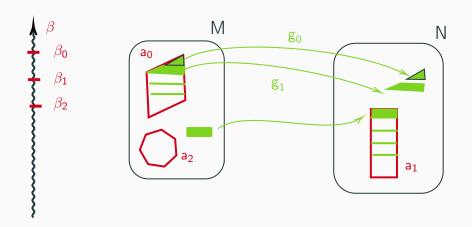












Shelah's game $\vartheta^{\beta}_{\theta}(M, N)$ of ordinal clock β .

A	3
$\beta_0 < \beta$, $\vec{a^0}$	
	$f_0: \vec{a^0} \to \omega$, $g_0: M \to N$ a p.i.
$\beta_1 < \beta_0, \ \vec{b^1}$	
	$f_1: \vec{a^1} o \omega$, $g_1: M o N$ a p.i., $g_1 \supseteq g_0$
:	:

Constraints:

- $len(\vec{a^n}) \leq \theta$
- $f_{2n}^{-1}(m) \subseteq dom(g_{2n})$ for $m \le n$.
- $\bullet \ f_{2n+1}^{-1}(m)\subseteq ran(g_{2n}) \ \text{for} \ m\leq n.$

 \exists wins if she can play all her moves, otherwise \forall wins.

Shelah's game equivalence (not [nec.] transitive!)

- M \sim_{θ}^{β} N iff \exists has a winning strategy in the game.
- $M \equiv_{\theta}^{\beta} N$ is defined as the transitive closure of $M \sim_{\theta}^{\beta} N$.
- A union of $\leq \beth_{\beta+1}(\theta)$ equivalence classes of \equiv_{θ}^{β} for some $\theta < \kappa$ and $\beta < \theta^+$ is called a sentence of \mathbb{L}^1_{κ} .

Shelah's game equivalence (not [nec.] transitive!)

- $M \sim_{\theta}^{\beta} N$ iff \exists has a winning strategy in the game.
- $M \equiv_{\theta}^{\beta} N$ is defined as the transitive closure of $M \sim_{\theta}^{\beta} N$.
- A union of $\leq \beth_{\beta+1}(\theta)$ equivalence classes of \equiv_{θ}^{β} for some $\theta < \kappa$ and $\beta < \theta^+$ is called a sentence of \mathbb{L}^1_{κ} .

Notice the weirdness!

(With Kiivimäki and Väänänen, we constructed a logic with generative syntax (usual sentences) whose Δ -closure is \mathbb{L}^1_{κ} : Cartagena logic $\mathbb{L}^{1,c}_{\kappa}$.)

Virtualizing \mathbb{L}^1_{κ} , $\mathbb{L}^{1,c}_{\kappa}$, . . .

There are at least two competing virtualizations of these logics:

 Use the definition from [BDGM]...but with the difficulty of not having a good grasp (in the case of Shelah's logic) of elementary embeddings...

Virtualizing \mathbb{L}^1_{κ} , $\mathbb{L}^{1,c}_{\kappa}$, . . .

There are at least two competing virtualizations of these logics:

- Use the definition from [BDGM]...but with the difficulty of not having a good grasp (in the case of Shelah's logic) of elementary embeddings...
- Use a "virtualized" version of the Shelah (or the Cartagena) game $\mathfrak{D}^{\beta}_{\theta}$, $\mathfrak{D}^{\beta,c}_{\theta}$ (Kiivimäki, Väänänen, V.)

Both virtualized versions are essentially existential closures of the logics. They would give rise to two competing notions of virtual embeddings (or different notions of genericity!). So...which one?

Delayable, virtually delayable...

Definition

A cardinal κ is a <u>delayable cardinal</u> if it is a compactness cardinal for the second-order version of Shelah's logic $L_{\kappa}^{1,II}$. It is a <u>virtually delayable cardinal</u> if it is a pseudo-compactness cardinal for $L_{\kappa}^{1,II}$. If we replace $L_{\kappa}^{1,II}$ by $L_{\kappa}^{1,II,c}$ we get the corresponding two notions of Cart-delayable cardinal and virtually Cart-delayable cardinal.

- 1. Where are these cardinals located? What kind of reflection properties do they capture?
- 2. The deeper issue is: what kind of virtuality do they actually correspond to? What version of forth-systems?

Thank you for your attention!