Tag Archives: model theory

Propagators and Sheaves (Bogotá, 9/18)

Seminario Lógica y Geometría (Bogotá, 9/18).

Mi charla: Propagators and Sheaves.

Uno de los ejemplos provenientes de la física cuántica que ha sido objeto de varios análisis modelo-teóricos en años recientes ha sido el propagador cuántico (trabajos de Zilber y de Hirvonen-Hyttinen). Aquí proponemos otro enfoque, más cercano a la lógica de haces métricos, en trabajo conjunto con Maicol Ochoa. En particular, damos una construcción mediante espacios de Schwartz que permite enfocar el comportamiento del operador asociado al propagador como límite de operadores que actúan sobre espacios finito-dimensionales.

Entre química y matemática: el rol de la teoría de modelos (Bogotá, 6/18)

(slides)

UN Encuentro de Matemáticas 5 – Universidad Nacional – Bogotá, junio de 2018

La teoría de modelos es la rama de la lógica matemática que tradicionalmente se ha ocupado del aspecto más semántico de la representación lógica de las estructuras matemáticas. Su inmenso desarrollo durante el pasado medio siglo la ha propulsado a
interactuar con muchas clases de estructuras haciendo énfasis en problemáticas de definibilidad, entendida esta de muchas maneras distintas, y de la interacción entre el
comportamiento de las estructuras y la sintaxis. La teoría de modelos ha emergido como una de las teorías matemáticas de grupos de invariantes más generales que hay;
como una de las teorías de Galois más amplias a nuestra disposición.

Además de lo anterior, la teoría de modelos recientemente ha indagado las llamadas
estructuras de aproximación (o estructuras límite) en teoría de números y en física
matemática, y también ha permitido entender fenómenos de no-localidad en física matemática.

La no-localidad es central en el desarrollo de una versión interna de la química matemática, según Primas entre otros autores ya clásicos de esta disciplina.
Enfocaré la conferencia en algunas preguntas de Primas (y otros autores) usando algunos desarrollos más o menos recientes de la teoría de modelos como prisma para leer sus preguntas.

Some interactions / model theory and set theory (Mexico City, 1/18)

(slides)

Some connections first between categoricity in model theory and the role of large cardinals in pinning down tameness (work of Boney and Unger), with a slight reframing of Boney’s proof. Then, more model theory and set theory connections, around the combinatorics of pcf structures, problems of absoluteness and tree properties.

1st Mexico-USA Logicfest – ITAM, Mexico City, January 2018.